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SIMPLE RIEMANNIAN SURFACES ARE SCATTERING RIGID

HAOMIN WENT

ABSTRACT. Scattering rigidity of a Riemannian manifold allows one to tell the
metric of a manifold with boundary by looking at the directions of geodesics
at the boundary. Lens rigidity allows one to tell the metric of a manifold with
boundary from the same information plus the length of geodesics. There are
a variety of results about lens rigidity but very little is known for scattering
rigidity. We will discuss the subtle difference between these two types of rigidi-
ties and prove that they are equivalent for two-dimensional simple manifolds
with boundaries. In particular, this implies that two-dimensional simple man-
ifolds (such as the flat disk) are scattering rigid since they are lens/boundary
rigid (Pestov—Uhlmann, 2005).

1. INTRODUCTION

1.1. The invisible Eaton lens. The invisible Eaton lens is a gradient-
index (GRIN) lens that looks like the vacuum from the outside, but has an infinite
refractive index at the center. The refractive index n of the invisible Eaton lens is
given by
Viim e L
nr n2r

One can think the Eaton lens as a Riemannian manifold with the conformally flat
metric n2gy on the unit disk. The metric has a singularity at the center, and the
trajectories of light will be geodesics in that Riemannian manifold.

As can be seen from Figure [T} the direction of each light ray when entering the
lens is the same as the direction of the light ray when leaving the lens. Hence
there is no refraction visible from the outside, (even though each light ray makes a
complete circuit inside the Eaton lens,) and thus this Eaton lens is invisible.

FIGURE 1. Trajectories of light in an invisible Eaton lens

Question 1.1. Can we have an invisible lens without singularities?
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1.2. Scattering rigidity and lens rigidity. Question is equivalent to asking
if flat balls are scattering rigid. Simply put, a Riemannian manifold M is scattering
rigid if M is determined by its scattering data (see below) up to isometries which
leave the boundary fixed.

Let m : QM — M be the unit tangent bundle of M and Q,M be the set of
unit tangent vectors at x for any x € M. Let 9QM be the boundary of the unit
tangent bundle of M. In other words, QM = J, gy 22 M. For each x € OM, let
v (z) be the unit normal vector of M pointing inwards at . Then put 9;Q, M =
{X € QM : (X, vm(2))g, > 0}, 000 M ={X € Q.M : (X,vr(2))g,, = 0}, and
0_QM ={X € Q.M : (X,vp(x))g,, <0} Also, write 04 QM = J,cops 0+ Qe M,
00IM =, con 000 M, and O_QM =, cops O- QM.

For each X € 0,QM, there is a geodesic yx whose initial tangent vector is X.
Extend the geodesic as long as possible until it touches the boundary 0M again.
Let 7x := ¢(yx), the length of ~vx.

If the geodesic ~yx is of finite length, call its tangent vector at the other end point
an(X). (See Figure[2]) The map s : 04 QM — OQM defined above is called the
scattering relation of M. Note that ap(X) will be undefined if vx is of infinite
length.

FIGURE 2. The scattering map a s

Suppose that we have two Riemannian manifolds (M, gar), (IV, gn) and an isom-
etry h: OM — ON between their boundaries. Then there is a natural bundle map
@ 0OM — OQN defined as

(1.1) p(aX + bvp(x)) = ahy(X) + by (h(2))

for any unit vector X based at x tangent to M and real numbers a and b such
that a2 +b%> = 1. M and N are said to have the same scattering data rel h if
poapy = ayoe. If we also have £(yx) = £(7,(x)), then we say M and N have
the same lens data rel h.

Definition 1.2. We say a Riemannian manifold M is scattering rigid (resp. lens
rigid) if for any Riemannian manifold N which has the same scattering data as M
(resp. lens data) rel h, (where h : OM — ON is an isometry,) we can always extend
h to an isometry from M to N.

We will omit “rel h” when h is clear from the context or the specific choice of h
does not matter.

Question 1.3 (Equivalent to Question . Are flat balls scattering rigid?

Remark 1.4. Theorem (below) shows that 2-D flat disks are scattering rigid.
Flat balls (of any dimensions) are known (Gromov [10]) to be lens rigid.
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1.3. Simple manifolds.

Definition 1.5. A compact Riemannian manifold with boundary is simple if

(1) its boundary is strictly convex,

(2) there is a unique minimizing geodesic connecting any pair of points on the
boundary,

(3) the manifold has no conjugate points.

Remark 1.6. Note that simple manifolds are topological balls.

Conjecture 1.7 (Michel [14]). Simple Riemannian manifolds are lens (boundary)
rigid.

Theorem 1.8 (Pestov—Uhlmann [15]). Simple Riemannian surfaces are lens (bound-
ary) rigid.

Remark 1.9. A Riemannian manifold is boundary rigid if its metric is determined by
the distance function between boundary points. The above statements are originally
about boundary rigidity, which is equivalent to lens rigidity when the manifold is
simple. Theorem confirms the conjecture for surfaces. There are a variety
of results in higher dimensions (Besson-Courtois—Gallot [2], Burago—Ivanov [3,4],
Croke—Kleiner [7], Michel [14]), but it is still largely open.

Our result extends Theorem [[.§] to scattering rigidity.
Theorem 1.10. Simple Riemannian surfaces are scattering rigid.

Remark 1.11. Simple Riemannian manifolds do not have trapped geodesics and
trapped geodesics often make this type of rigidity problems much harder. Amaz-
ingly, the first (and the only one before this one) known result (Croke [6]) of scat-
tering rigidity is for the flat product metric on S x D™, which has trapped geodesics.

To get Theorem from Theorem it suffices to show that M and N have
the same lens data if they have the same scattering data, assuming that M is simple.
Note that this is not true in general without the assumption that M is simple. (See

Figure 3])

(a) (b)

FIGURE 3. is obtained from [3a] by removing the upper hemi-
sphere and identifying antipodal points in the top boundary com-
ponent. [3a] and 3D have the same scattering data but different lens
data.

By the first variation of arc length, £(v,(x)) —€(7x) is equal to a constant L > 0.
If L > 0, then v,(x) converges to a closed geodesic of length L as X converges to a
vector X tangent to the boundary. (See Figure ) We will call this closed geodesic

YXo-
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(a) yx in M (b) Yo(x) in N

F1GURE 4. Closed geodesics?

At first glance, this is very unlikely to happen, since one expects N to be convex
as OM is convex. However, the convexity of the boundary of a manifold, being a
local property, is not determined by local scattering data as illustrated by the
invisible Eaton lens. The boundary of the invisible Eaton lens is actually totally
geodesic, and we have closed geodesics running along the boundary. The trickiest
part of the proof is to get rid of these closed geodesics using knot theory, (which
only works in dimension 2 so far).

1.4. Scheme of the proof. As explained in the previous section, we need to close
the gap between lens rigidity and scattering rigidity, that is, to show L = 0. Recall
that L = £(v,(x)) — £(7x), the difference between the lengths of corresponding
geodesics in M and N, where M and N are two Riemannian manifolds with the
same scattering data rel h: OM — ON.

In section |2} we will prove that N is homeomorphic a disk.

Pick any « € ON. If L > 0, then there is a closed geodesic 7, of length L which
is tangent to AN at x. There are two such closed geodesics for each x, but we can
choose 7y, properly such that v, moves continuously as = moves. In this section, we
will assume that 7, has multiplicity 1. The actual proof will be more complicated
due to the possibility of higher multiplicities, but the idea of the proof is the same.

The paper will study the isotopy type of the projectivized unit tangent vector field
Po#, :R/Z — PQN of v, where 4, : R/Z — QN is the unit tangent vector field
of v, (see in section 3), PAN = QN/{(z,£) ~ (z,—¢)} is the projectivized
unit tangent bundle of N, and P : QN — PQN is the corresponding quotient map.

In section [3] we shall define a family of knot invariants for contractible knots
embedded in PN, and then use those invariants to prove Theorem which is
interesting on its own.

Theorem 1.12. P o# is an isotopically non-trivial knot in PQN for any smooth
immersed curve v : R/Z — N without self-tangencies.

Remark 1.13. Theorem [I.12]is purely knot-theoretical as it involves nether scatter-
ing data nor lens data. It is a bit surprising that this simple fact was not known
before even for plane curves. Actually, it would be a completely different story if
the projectivization were dropped: Chmutov—Goryunov—Murakami [5] showed that
every knot type in QR? (including the trivial type) is realized by the unit tangent
vector field along an immersed plane curve.

Notice that the union of P o4, for all x € N is a torus immersed in PQN. We
can perturb the immersion to an embedding. Then we can prove that the torus
is compressible by showing that P o 4, is contractible. (Actually, any embedded



SIMPLE RIEMANNIAN SURFACES ARE SCATTERING RIGID 5

torus in PN is compressible.) Next, we can show that the other generator of the
fundamental group of the torus is not contractible in P o 7,. It follows that P o7,
bounds an embedded disk, which contradicts Theorem Therefore, there is no
such closed geodesics.

In the actual proof, we shall prove Theorem [I.10] in section [4] using a similar
contradiction without the assumption on the multiplicity.

1.5. Acknowledgements. Many thanks to my advisor Christopher Croke for in-
troducing me this subject and teaching me the techniques in this field. Many ideas
in this paper stem from discussions with him.

2. ToPOLOGY OF N

Through out the paper (except in section , M and N will be two Riemannian
surfaces with the same scattering data rel h : 0M — ON where h is an isometry.
Also, M is assumed to be simple. ¢ : QM — OQN is the induced bundle map
defined in . We aim to prove the following result in this section

Proposition 2.1. N is homeomorphic to a 2-disk if M is simple.

If L := l(y,(x)) —£(vx) = 0, then M and N have the same lens data, and hence
N is a 2-disk. Thus we shall assume that L > 0 in this section.

Pick a point pg € N, and let 51 : [0,1] — ON be a constant speed closed curve of
multiplicity 1, starting and ending at py. There are two such curves corresponding
to different orientations but either one is fine.

Fix an orientation of ON and let Yy(z) be the unit vector tangent to N at
x € ON such that Yy(z) and IN have the same orientation. Define 3, : [0,1] = N
as

Bz (t) = vy () (L1),

where vy, () is the closed unit speed geodesic tangent to Yp(x) of length L. Write

2 = Bpo .
For any loop /8 in N based at p € N, we will denote by [3], the based homotopy
class of 8. Also, let h : m(N,p) — Hy(N,Z) be the abelianization map which

sends based homotopy classes to corresponding homology classes. We will write

(6] == h([B]p)-

Proposition 2.2. [51],, = [82],.2.

Proof. We shall prove the equivalent statement

(2.1) [Balpo = [Belpg 181l -

Let Y : [0,1],, — 0+QN be a smooth curve from Yy(z) to —Yy(x) such that

. (T(Y7)) = B (D).
Define H : [0,1] x [0,1] = M as

H(t) = {WS @2r(Yot) ifo<t

1
— 2
Bi((2—2t)s) if3<t<1

Then [Holp, = [B2]p, and [Hily, = [Ba],.'[B1];,, which implies (2.1). O
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Notice that g, are all in the same homology class. Denote by go the homology
class of 3.

Assume that go # 0. Since N is a surface with boundary, it deformation retracts
to a graph. (The deformation is quite simple. Take any cell structure on N. Remove
a 1-cell on the boundary and a 2-cell by deformation retraction if they intersect.
Repeat this process until all 2-cells are removed.) Hence H;(N,Z) = Z" for some
n € N. So go = mgp for some m > 0 and gg prime. Then the multiplicity of 3, is
at most m since it must divide m. Let mg be the maximal multiplicity of 3.

Proposition 2.3. If go # 0, then H(N,Z) is generated by go.

Proof. For any g € m1(N,po), let 74 : [0,1] — N be the length minimizing represen-
tative of g that is of constant speed Tj. Since A :=~; (N \ dN) is open, A = J A
where A is a family of disjoint open intervals. For any (a,b) € A, since 7, is length
minimizing, v,[(.,5 has to be a geodesic segment. If a # 0, then 77 (a) has to be
tangent to N, or -y, will have a corner at -y,(a), contradicting the assumption that
7y is length minimizing. According to the scattering data, v, (b) is also tangent to
ON if vy (a) is tangent to ON. Hence 7,4, is a closed geodesic tangent to N when
a # 0. Similarly, 7,4, is closed geodesic tangent to N when b # 1. Suppose that
a=0andb=1. If v, (0) is not tangent to N, then v;(0)/|v,(0)| = p(X) € 0, QN
for some X € 0,QM, and we have v, (1)/|v;(1)| = an(X). Since M is a simple
manifold and X € 0,QM, ~vx is a length minimizing geodesic, and thus X and
an(X) have different base points. It follows that ~; (0) and v, (1) also have different
base points, contradicting our assumption that -y, is a loop. Therefore, in any case,
Ygl[a,5) is a closed geodesic tangent to N, and thus of length at least mio It follows
that |A] < moTy/L < co. So we can write A = {(a1,b1), (a2,b2),...,(an,,bn,)}
where ng = [A] and 0 < a1 < by <ax <by <+ <ay, <b,, <1.

Since Ygl(a, ;] is a closed geodesic, [Yy|(a:p:)] = g4 for some k; > 0. Deleting
all those closed geodesics from «,, we obtain a curve running around ON [ times
for some | € Z. Tts homology class will be [31]* = [Ba]*2 = gF?™. Therefore,
hg) = go "o

. Since h is surjective, H1(N,Z) is generated by go. O
Proposition 2.4. N is not a Mébius strip.

Proof. Let m : N; — N be a double over of N. Then N; is an annulus with
two boundary components S; and S3. There are p € S; and ¢ € Sy such that
d(p,q) = d(S1,S2). Let v be the shortest curve from p to g, then v is perpendicular
to S1 and Sy at tis end points. Let v be the unit normal vector at p. Since 7 is
the shortest curve from p to ¢, its beginning part must coincide with ~,. If the
end point 7, (7n, (v)) is on Si, we can shorten 7 by deleting 7,. If the end point
Y (TN, (V) is on Sa, then 7 can not be any longer. Thus 4(7y) = 7, (V)

Notice that, for any X € 0,QN;, movx = v, (x).- Let ¥; be a smooth curve
in Q,N; such that Yy = v, that ¥; € 0, QN; for t € [0,1) and that Y; is tangent
to 0S1. Notice that the end point of 7 o vy, = v, (y,) moves continuously (since
N has the same scattering data as the simple surface M), and hence the end point
of 7y, moves continuously for ¢ € [0,1). Therefore, vy, connects p and Ss for any
t € [0,1). However, we have ¢(v) = 7n, (v) = 8 (7 (v)) > L, and lim; 1 £(7yy,) =
lim; 1 75 (74 (Y)) = L, which contradicts our assumption that ~y is a shortest curve
connecting S and Ss. O
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Proof of Proposition[2.} If go # 0, then H;(N,Z) is generated by go by Propo-
sition Hence H(N,Z) = Z, which implies that N is a Mobius strip, which
contradicts Proposition

Therefore, go = 0. It follows that S5 is contractible, and hence (5 is contractible

by Proposition[2:2] Since every contractible simple closed curve on a surface bounds
a disk [9, Theorem 1.7], N is a disk. O

3. KNOT THEORY

In this chapter, N will denote a Riemannian surface, with or without boundary,
orientable or not. We assume that there is a Riemannian metric on N just for
convenience and all the results can be stated with only a smooth structure.

3.1. Projectivized unit tangent vector fields.

Definition 3.1. The unit tangent vector field of a smoothly immersed curve vy on
any Riemannian surface N? (possibly with boundary) is a smoothly immersed curve
5 in QN defined as

(3.) 310 = (20 50 )

Definition 3.2. Let P : QN — PQN be the quotient map on the unit tangent bun-
dle which identifies the opposite vectors based at the same point. For any smoothly
immersed curve v in N2, Po# is called the projectivized unit tangent vector field
(or the tangent line field) of .

Remark 3.3. Chmutov—Goryunov—Murakami [5] showed that every knot type in
QOR? is realized by the unit tangent vector field along an immersed closed plane
curve. However, Theorem shows that it is no longer possible to realize the
trivial knot after the projectivization. Figure [5]is an interesting example showing
that the unit tangent vector field of the figure eight curve is an unknot while the
projectivized unit tangent vector field of the figure eight curve is knotted.

VO

(a) v:R/Z — R? )7 :R/Z — QR? c) Po&:R/Z — PQR?

FIGURE 5. The unit tangent vector field of the figure eight curve
is unknotted while the projectivized unit tangent vector field of the
figure eight curve is knotted. Here the solid tori (2R? and PQR?)
are projected to annuli for illustration.
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Proposition 3.4. For any smoothly embedded closed curve v : R/Z — N in a
2-dimensional manifold N, 4 is not contractible in QXN and hence P o~ is not
contractible in PQON .

Proof. If « is contractible, then v bounds an embedded disk N7 in N [9, Theorem
1.7].

Let z = 5(0), p = 7(0) and F = 7 !(p). Denote by [J], the based homotopy
class of 4. As in Figure[f] 7 corresponds to a vector moving along v for a complete

~(0.75) 7(0.25)

(a) 4 (b) Moving base (c) A generator of
points towards p m1(F, z)

FIGURE 6. 7 is homotopic to a generator of 71 (F, x)

circle and being tangent to « all the time, which is homotopic to a generator of
71 (F,x). Denote the generator of 71 (F,x) by ¢;.
Since

F—5 N —"5 N
is a fibration, we have an exact sequence of homotopy groups

mo(N,p) —— m(F,z) —=— m(QN,z) —=— (N, p).

Here 71 (F,z) = Z since F is a circle.

If N = S? then m(N,p) = 0 and 71 (QN,p) = 7 (RP3,%) = Z/2Z. Hence
ix(m(F,x)) = Z/2Z. In particular, i,(¢g1) # 0. A similar argument shows that
ix(€) # 0 when N = RP2,

If N #S? and N # RP2, then 72 (N, p) = 0. Hence i, is injective. In particular,
ix(g1) # 0.

This completes the proof of Proposition [3.4] [l

3.2. Knot invariants. We shall define a family of knot invariants for contractible
knots in the projectivized unit tangent bundle PN and use these invariants to
prove Theorem

Let 8 : R/Z — PQN be a contractible smooth knot in the projectivized unit
tangent bundle PQN, whose projection to the surface N? is a smoothly immersed
curve v : R/Z — N? without self-tangencies.

Definition 3.5. 5 has a crossing at (I,I') € R/Z x R/Z if L 1" and ~v(I) = ~(I).
Note that a triple crossing will be treated as three independent crossings according
to this definition.
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Since 8 : R/Z — PQN is contractible, we can lift § to B R/Z — QN, a
knot embedded in the unit tangent bundle. (8(t) is a unit vector at y(t) but not
necessarily tangent to ~.)

Definition 3.6. A crossing of 8 at (I,1’) is positive if the two pairs of vectors
(B, IN) and (v (1),7' (")) are of the same orientation. (See Figure E) A cross-
ing will be called negative if it is not positive.

Y'(l') 70

(a) A positive crossing (b) A negative crossing

FIcURE 7. Each little arrow means a point on B

Lemma 3.7. Suppose that v : R/Z — N is a smoothly immersed closed curve on
a surface N without self-tangencies, then all crossings of P o 4(t) are positive.

Proof. Suppose that P o 4 has a crossing at ([,I'). Write 5 = P o 4. Then
B, 1) = (v'(1),7'(1")), and hence they have the same orientation. Therefore
the crossing at (,1) is positive. O

Let X be any topological space. For any two curves a; : [0,1] — X and as :
[0,1] — X such that a;(1) = a2(0), denote by ai * ae : [0,1] — X the curve
obtained by gluing as to ay. Also, define R(ay) as R(aq)(t) := a1(1—1t). If g and
arz are loops based at p, we have [a1]p[as], = [ * az], and [R(en)], = [aa], '
Definition 3.8. Two closed curves oy : R/Z — X and as : R/Z — X in any
topological space X are said to be in the same unoriented free homotopy class if v,

is homotopic to either y2 or R(vs).

When § has a crossing at ({,1'), 5(1) and 3(I') are two unit vectors with the
same base point x = w(5(l)) and they are neither opposite to each other nor the
same (since § is an embedding). Hence there is a unique shortest curve B(l,l/) in
7~ 1(z) connecting 3(I) and B(I'). Separate 3 into two arcs by cutting at 3(I) and
B(I), obtaining two arcs f; : [0,1] — PQN and j3, : [0,1] — PQN going from 3(1)
to B(I').

Now, let 8] = (POBl)*R(POB(U/)), and 3} = (POB(M/))*R(POBQ). Notice that
B1 * R(p) is homotopic to 3, and hence [51],[R(82)], = [B1 * R(Ba)], = [Blp = e
Hence [31], = [R(85)], " = [B5]p- In other words, ] is homotopic to 35, and hence
B} and B4 are in the same unoriented free homotopy class of PQN.

Definition 3.9. The unoriented free homotopy class g 1y of By is called the type
of the crossing of 8 at (I,1').
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FIGURE 8. Smoothing a crossing. Here each little arrow means a
point on 3 and each little bar means a point on S /).

Definition 3.10. For each nontrivial unoriented free homotopy class g of closed
curves in the projectivized unit tangent bundle PYN, define

Wy(B) = #{positive crossings of B of type g}
— #{negative crossings of B of type g}
3.3. W, is a knot invariant.

Theorem 3.11. For each non-trivial free homotopy class g, Wy can be extended
to all the contractible knots embedded in PQAN as a knot invariant.

We will show that W, is a knot invariant by verifying that W, is unchanged
under Reidemeister moves. A knot will gain or lose a crossing of trivial type after
going through a Reidemeister move of type 1. It will gain or lose a pair of crossing
of the same type but opposite signs after going through a Reidemeister move of
type II. Reidemeister moves of type III will not affect crossing. The proof is rather
lengthy because of some technical difficulties.

We will assume that N is compact, and the general case follows automatically
since any manifold is o-compact.

Definition 3.12. According to [1, Theorem 5], there is r > 0 such that there is a
unique minimal geodesic segment joining p,q € N if d(p,q) < r. The biggest such
r will be called the injectivity radius of N and we will denote it by inj(N).

For any two points p,q € PQN, let di(p,q) be the distance between m(p) and
7m(q) on N. (So dp, is a pseudo metric on PQQN.) Notice that p is a projectivized
unit tangent vector at m(p). When dp,(p,q) < inj(N), there is a unique shortest
geodesic 7y : [0,1] — N in N connecting w(p) and 7(q). Let X : [0,1] — PQN
be the parallel projectivized vector field along 7 such that X(0) = p. Similarly,
let Y : [0,1] = PQN be the parallel projectivized vector field along + such that
Y (1) = ¢. Notice that the angle between X and Y is constant, which is smaller
or equal to 5. Call this angle d,(p, q). Next, put d’(p,q) = max(dy,(p, q), dy(p, q))-
Note that d,, d, and d°(p,q) are all non-negative and symmetric, but they are not
metrics.

Definition 3.13. For any p,q € PQN such that dy(p,q) < inj(N) and that
dy(p,q) < 5, let 72’11 :[0,1] = QN be the curve that satisfies the following condi-
tions.

(1) 7p.4(0) = p and 7 (1) = q.

(2) o~y is the minimal geodesic connecting w(p) and 7(q).
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(3)

(3-2) = du(p, q)-

D 4
’dt'yp,q

’yg,q will be called the minimal linear curve connecting p and q. A curve will be
called linear if it coincides with 727(1 for any pair of points p,q on the curve that are
close enough. A curve will be called piecewise linear if it consists of finitely many
linear curves.

Proof of Theorem [3.11 For any ¢ < min(inj(N),%) and n > 4, we will define
a class of closed piecewise linear knots in PQN called K(n,e). A closed knot
B :R/Z — PQN is in K(n,¢) if and only if the following condition holds:

(1) B is contractible.
(2) d°(B(£),B(EL)) <efor k=0,1,...,n—1.
(3) B(EL) = yg(ﬁ) ﬁ(@)(t) fort € [0,1] and k =0,1,...,n — 1.

In other words, the “distance” (dj and d,) between any two adjacent vertices p
and ¢ is at most € and the edge between them is 'yqu. K(n,e) is an open subset of
(PQN)™, and thus of dimension 3n.

Let 8 € K(n,¢) be a piecewise smooth contractible knot with vertices {z) =
B(£)} and edges {ex, = ygwm}. Its projection 7 o 3 is said to have a singularity
at the vertex m(z;) if m(z;) is on 7o e; for some j ¢ {i,i — 1}.

Let Kk (n,€) be the set of knots in K(n, ) whose projections on N have at most
k singularities. Also, let K} (n,e) = Ki(n,e) — Kg—1(n, ), knots with exactly k
singularities. Then Ko(n,e) is a open submanifold of K(n,e), and Kf(n,¢) is a
submanifold of K(n, ) of co-dimension 1.

Notice that the W,(8) can be defined for 8 € Ky(n,e) as before without any
modifications. Consider a continuous family of knots 8; € Ko(n,e). As t varies,
crossings of 3; also moves continuously with their types unchanged. Therefore, W,
is constant on each component of Ky(n,¢).

Next, we extend Wy to K1(n, ). The old definition can not be adapted directly
since there might singularities. Pick any fSo, 51 € Ko(n,e) such that Sy, 51 are in
the same component of /0y (n, ). We aim to show that W (5y) = W,(81), and then
we can extend Wy to ICq(n, €) by making it constant on each component. Note that
W, will remain the same on ICo(n, €).

Pick a smooth path H : [0,1] — Ki(n,e) from By to ;. Perturbing H if
necessary, we may assume that H intersects Kf(n,e) transversely a finite number
of times. Let xo(t), x1(t), - .., xn(t) = 2o(t) be the n vertices of H(t).

As long as H(t) stays in Ko(n,e), each crossing will just be moving without
changing its type. When H (t) passes through K} (n,¢), there are three possibilities
corresponding to three types of singularities for knots in K’(n,e) listed below.
Suppose H(c) € Ki(n,e) and H(t) ¢ Ki(n,e) for t € (¢ — 6,¢)U(c,c + ). Then
7o H(c) has a singularity at 7(z;(c)) which is on woe; where x;(c) is the i-th vertex
of H(c) and ej(c) is j-th edge of H(c) (connecting z;(c) and z,11(c)).

(1) If moe;(c) or moe;—1(c) is tangent to m o ej(c), then the singularity is
called a cusp. This happens when ¢ = j — 1 or ¢ = j 4+ 2. In this case,
H(c+9) has one more or one less crossing than H(c—¢) has. We will show
that the crossing involved is of the trivial type, (i.e., ¢ = 0,) and hence
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Wy(H(c — 9)) = Wy(H(c + 6)) for any non-trivial unoriented homotopy
class g of closed curves immersed in PQQN.

(a)t=c—90 (byt=c (c)t=c+46

FIGURE 9. has one more crossing of the trivial type compared
to @ This corresponds to a Reidemeister move of type 1.

Without loss of of generality, assume that ¢ = j — 1 and that H(t) has
one more crossing at (I(¢),1’(¢)) than H(#') has when ¢ — § < t/ < ¢ <
t < c+4. (See Figure[9]) For any t € (c,c + 4], swapping [(¢) and I'(t)
if necessary, we may assume that [(t) € (=1, L) and I'(t) € (“EL,£2).
Lift H : [0,1] = K(n,e) to H : [0,1] = (R/Z — QN). Since H(t) is an
embedding, H(t)(I(t)) # H(t)('(t)), and hence H(t)(I(t)) and H(t)(I'(t))
are not opposite vectors. It follows that there is a unique minimal geodesic
a(t) : [0,1] — 7' (z) connecting H(t)(I(t)) and H(t)(I'(t)). Let a(t) =
Poa(t) and glue a(t) to H(t)|;¢).1r 1)), obtaining a closed curve C(t). Then
the type of the crossing of H(t) at (I(t),I’(t)) is the unoriented homotopy
class of C(t). It remains to show that C(t) is contractible.

Let I(c) = limy— o4 I(t) and I'(¢) = limy_,o4 I'(t), then C(c) can be defined
as before, which is homotopic to C(t) for ¢t € (¢,c+ ). We shall show that
C(c) is contractible.

Reparametrize C(c) as 3 : R/Z — PQN such that 3(0) = H(c)(I(c))

B(3) = zivi(c), B(3) = H(c)(l'(c) and m(B(5(1 + 5))) = n(B(5(1 - )

for any s € [0,1]. To be precise, define 3 as
H(c)(H£3L) if t €0, 3],

Bt) = { H()(F + (3t = 1)(U'(e) = 551)) ift €[5, 3],

a(3 — 3t) if t € [2,1].

Consider the homotopy G : [0,1] — (R/Z — PQN) defined as
B(t) fo<t<i(l-s),

G(s)(t) = ¢ T(B(t), m(B(3(1 = 9)))) if 5(1—s) <t < g(1+s),

B(t) if2(1+s)<t<1,

where T(B(t),7(B(3(1 — 5)))) is a projectivized unit tangent vector at

m(B(3(1 — 5))) obtained by transporting 3(¢) parallelly along 7 o ¢;(c).
Notlce that G(1) is a closed curve in ()N, where QN is a circle of
length 27, (using the Sasakian metric). We are going to show that G(1)
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is contractible by showing that ¢(G(1)) < 2w. For any piecewise smooth
curve v : [a,b] = PQN, define its vertical length as

t() = / D
D

0]
where Z is the covariant derivative. Loosely speaking, £,(y) measure the
angle that ~(t) rotates by as t goes from a to b. By our construction,
{,(G(s)) is constant as s goes from 0 to 1. Notice that 3 has three edges.
The edge from 3(0) to 3(3) and the edge from B(1) to B(2) both have
vertical lengths at most ¢ (by ), and the vertical length of the edge
from 3(2) to B(0) (which is reparametrized ) is at most 7. Since € < Z,
0,(B) < 7+ 2e < 27, and hence £(G(1)) = £,(G(1)) = £,(G(0)) = £,(B) <
2. Tt follows that G(1) is contractible, and hence C(t) is contractible for
any t € [c,c+ 0].
If moe;(c) and moe;_1(c) are not tangent to m o e;(c), and if m o e;(c) and
moe;_1(c) are on the same side of 7 o e;(c), then the singularity is called
a self-tangency. In this case, H(c + ¢) has two more or two less crossings
than H(c— 0) has. We can show that the two crossings involved are of the
same type g but opposite signs, and hence Wy (H (c + §)) = W,(H(c — 9)).
Without loss of of generality, assume that H (¢) has two more crossing at
(11(t),15(¢)) and (I2(t),15(¢)) than H(¢') has when c—0 <t <c <t < c¢+9.
(See Figure[10]) Let {;(c) = limy_,c4 l1(t) and define I{(c), lo(c) and l(c)

(a)t=c—9 (b)yt=c (c)t=c+46

FiGure 10. has two more crossing of the same type but op-
posite signs compared to This corresponds to a Reidemeister
move of type II.

similarly. Switching I and [} if necessary, we may assume that l1(c) = la(c)
and lf(c) = l5(c). Also, either H(l1(c)) = x; or H(l}(¢)) = x;. Without
loss of generality, we assume that H(l;(c)) = z;. Lift H : [0,1] — K(n,¢)
to H :[0,1] — (R/Z — QN), and denote the vertices of H(t) by i (t) and
edges by éx(t).

For any t € (¢,c + 6], we can separate H(t) into two arcs by cutting
at H(l,(t)) and H(I,(t)). Pick the arc which contains Z;(¢) and glue it
to H(ll(t),l’l(t))a obtaining a closed curve C(t). We can also separate ﬁ(t)
into two arcs by cutting at H(Iy(t)) and H(I,(t)). Pick the arc which
does not contain iZ;(t) and glue it to ﬁ(h(t),lé(t)), obtaining a closed curve
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C(t). Next, define C(c) and Cs(c) by taking limits. It is then clear that
P o Ci(t) and P o Cs(t) are in the same unoriented homotopy class since
C1(c) = Cy(c). Hence the two crossings at (I1(t), 1} (¢)) and (I2(¢),15(t)) are
of the same type.

Finally, it remains to show that the two crossings have opposite signs.
Without loss of generality, assume that the crossing at (11 (¢), 1} (t)) is posi-
tive. In other words, (H (I1(t)), H(I}(t))) and ((wroH)'(I1(¢)), (mo H) (I} (t)))
have the same orientation. It follows that (H (I1(c)), H(I,(c))) and (limy_, ¢4 (7o
H)Y (11(t)), (m o H)'(l}(c))) have the same orientation. Since 7 o e;(c) and
moe;_1(c) are on the same side of 7o e;(c), (limy—eq(mo H)'(I1(t)), (7w o
H)'(l{(e))) and (lim¢— ey (moH ) (12(t)), (moH)'(I5(c))) have the opposite ori-
entation. Since (H(l1(c)), H(l%(c))) and (H(lz(c)), H(I,(c))) are the same,
(H(lz(c)), H(lh(c))) and (limy_yeq (7 0 H) (I2(t)), (m o HY (I5(c))) have the
opposite orientation, and thus the crossing at (I2(¢),15(t)) is negative.

(3) If roe; and moe;_; are not tangent to moe;, and if moe; and Toe; 4
are on different sides of 7 o e;, then the singularity is called a transverse
self-intersection. In this case, all crossings moves continuously as t goes
from ¢ —d to ¢+ 9, although one crossing will be also a singularity at ¢t = c.
The type and the sign of that crossing will be unchanged, which follows
from an argument very similar to the one used for the previous case.

In any case, we have W, (H (c — §)) = Wy(H (c+ 6)) for any non-trivial type g. It
follows that Wy (8y) = Wy(H(0)) = W4(H(1)) = W4(51), and thus we may extend
W, to K1(n,e) by making it constant on each component.

Next, we will extent W, to the whole K(n,¢). Pick any £y, 81 € Ki(n,¢e) such
that B, 51 are in the same component of K(n,e). We aim to show that Wy (5y) =
Wy(B1), and then we can extend Wy to K(n,e) by making it constant on each
component.

The manifold K(n, ) has a natural stratified structure as follows. For any v €
K(n,e), pick any neighborhood U of v. If v has k singularities, then let U, be
the component of U (K}, (n,¢e) containing -y, which is a submanifold embedded in
K(n,e). Now, let X,,, = {y € K(n,¢) : dim(U,) = m}. Then K(n,¢) is a stratified
space whose m-dimensional stratum is X,,. We obviously have X3, = Ko(n,¢)
and Xs,—1 = Ki(n,e). (Note that X,, = K%, _,,(n,¢) is not true when m is big
since the singularities are not necessarily independent. See Figure ) Pick a
smooth path H : [0,1] — Ki(n,e) from By to 1. Perturbing H if necessary, we
may assume that H intersects each stratum X,, transversely. In other words, H
does not intersect X, at all if m < 3n — 1. Hence H is actually a path in K1 (n,e),
and thus Wy(8p) = Wy(B1). Therefore, we can extend W, to K(n,e) by making it
constant on each component.

We can extend W, to a knot invariant for all contractible knots embedded in
PQN using Lemma [A7T] which will be proved in Appendix [A] For any smooth
contractible knot 3, we can approximate 3 by a piecewise linear knot S’ that is
homotopic to B. Then we set Wy(B8) = Wy(B'). W, is well-defined according to
Lemma [A ] O

Now, we are ready to prove Theorem [1.1

Proof of Theorem[I.13 Let 3 = Po# be the projectivized unit tangent vector field
of .
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T8

X2 T3

x1 T T4 Z7 Zg

FIGURE 11. This is the projection of a knot 5 € X54 to N. Notice
that x4 is on the edge from zg to z; and also the edge from xg
to x7. Hence, there are two singularities involving x4. There are
also two singularities involving zg and x7, and thus 8 € K4(9,¢).
This counterexample shows that X, = K%, _,. (n,€) is not true in
general when m is big.

If B is not contractible, then [ is a non-trivial knot. Assume that 3 is con-
tractible. We are going to show that W,(8) > 0 for some g, while W, (Unknot) = 0
for any g¢.

Assume that v has no self-intersections. Then f is not contractible by Proposi-
tion So 7 has at least one self-intersection.

We will start at any point on v and trace along v until hitting the trace. To
be precise, let ¢ = max{t : 7|[,q has no self-intersection}. Then there is p € [0, q)
such that v(p) = v(¢) and 8 has a crossing at (p,q). By Lemma the crossing
of B at (p,q) is positive. Separate /3 into two arcs by cutting at B(p) and B(q)
Then B ip.q Will be one of these two arcs. Glue B l1p,q) tO B(p)q), obtaining a closed
curve B/ . We can gradually widen the angle of 7|, , at the corner until it becomes

a simple smooth closed curve, and B' will converge to the unit tangent vector field
along that simple smooth closed curved. By Proposition /" is not contractible
in QN.

Denote by g the non-orientable homotopy type of 3/, then Wy(8) > 1 by Lemma
Since Wy(Unknot) = 0, 5 is isotopically non-trivial. O

Actually, a stronger (but more technical) result can be proved with exactly the
same proof.

Theorem 3.14. Suppose that v1 : [0,1] — N is smoothly immersed curve without
self-tangencies and that fo : [0,1] — PQN is a smoothly embedded curve connecting
the end points of B1 := Po~. Glue B3 to f1, obtaining a closed curve B in PQN. If
~v1 has at least one self-intersection, 1 and 7o By have no intersections and wo By
has no self-intersections, then [ is isotopically non-trivial.

Proof. Just let

. B1(2t) if t € [0, 1],
| B(@2-2t) ifteld )
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and v = 7o . Let ¢ = max{t : ][4 has no self-intersection}. Then there is
p € [0, ¢) such that v(p) = v(¢) and S has a crossing at (p, q).

Note that ¢ < % because 1 has at least one self-intersection. The rest of the
proof is very similar to the proof of Theorem since it only involves S, 4-

4. CLOSED GEODESICS TANGENT TO THE BOUNDARY

In this section, M and N will be two Riemannian surfaces with the same scat-
tering data rel h : OM — ON where h is an isometry. Also, M is assumed to be
simple. ¢ : 0QM — 9QN is the induced bundle map defined in . In this
section, we shall prove Theorem by studying closed geodesics tangent to the
boundary.

Recall that L = 75 (p(X)) — 7 (X) > 0 is a constant. We need to show that
L=0.

For any Y € 0yQQN, Recall that vy is the limit of geodesic segments ~vx as
X =Y where X € 0,.QN. ~y is a closed geodesic of length L.

Proposition 4.1. If L > 0, then Po”y is contractible in PQN for anyY € 0yQAN.

Proof. Pick p € 0QN. Let Y € 0y, N be one of the two unit vector at p which
are tangent to ON. Put

Y, = cos(ws)Y + sin(ws)v(x),

for each s € [0,1].
Now define a continuous family of loops H : [0,1] x R/Z — QN as
Yy, (3T(Yo)t) if0<t <3,
Hy(t) = an(Yoas) if 5 <t <3,
Yizi—2)s if §<t<l

We shall show that H1|[%,1] is contractible. Since N is a disk, there is a diffeo-
morphism 1 : N — {(z,y) € R? : 22 + y? < 1}. For any X € QN and z € N, let
&(x, X)) be the unit vector based at x such that ¥, (£(z, X)) and 9.(X) have the
same directions as two vectors in R?.

Since N is a disk, ON is homotopic the constant curve at p. So there is a
homotopy ¢ : [0,1] x [0,1] — N such that ¢(1,-) = p and that ¢(0,t) = 7(an(¥2)).
Next, define a continuous family of loops G : [0,1] x R/Z — QN as

Gy(t) = &(q(s,2t),am(Yar)) f0<t< %,
| Yoou if 1 <t<1.

Let A; be the angle that ri(f) := &(p, apr(Y7)) rotates by as ¢ goes from 0 to t. We
shall show that A; = 7. Let B; be the angle that r(£) := &(p, %q(0,17)) rotates
by as t goes from 0 to t. Notice that ¥(q(0,%)) goes around the unit circle in R?
for a full circle as t goes from 0 to 1. Hence By = 27. Let C; be the signed angle
between r; and ry. Since 71(0) and r2(0) have the same direction, C; = By — A;.
For any t € (0,1), aps(Y%) is not tangent to N, and hence C; € [0, 7] for ¢t € [0, 1].
Since r1(1) and r2(1) have opposite directions, C; = 7, which implies that A; = 7.
Therefore, £(p, an(Y:)) rotates counterclockwise by 7 as t goes from 0 to 1. On
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the other hand, the Y5_o; rotate by 7 clockwise as ¢ goes from % to 1. Hence G; is
contractible. It follows that G is contractible, and thus H; | 1] is contractible.

Since H0|[%)1] is constant and Ho\[o,%] coincides with 4y, Hy is homotopic to vy .
Since Hl\[%,l] is contractible and H1|[07%] coincides with 4_y, H; is homotopic to
~—y. Therefore, 4y is homotopic to y_y.

If we rotate each vector counterclockwise by 7, then 4_y becomes R(7y ). Hence
Ay is homotopic to R(§y). It follows that [Jy] = [R(3y)] = —[Jv], where [q]
means the homology class of a. Since N is a disk, QN is a solid torus, and hence
Hy(Q2N,Z) = Z. Thus [Fy] = 0, that is, 3y is contractible. Hence P o 7y is
contractible in PQN. O

Fix an orientation of N and let Xo(x) be the unit vector tangent to IN at
x € ON such that Xo(z) and ON have the same orientation. Let h; : R/Z — ON be
an orientation preserving diffeomorphism. Pick € > 0 small and let T': 9N — ON
be a diffeomorphism defined as

T(w) = ha(hy ' (z) +e),
and let X;(z) € 04Q,N be the vector which is tangent to the geodesic from z to
T(z). Finally, put Xo(z) = a(X1(T(x))). When T-(x), x and T(x) are close,
both X;(z) and X5 (z) are close to Xo(z), so we may assume that the angle between
X1(x) and Xo(x) is smaller than 7 by picking e small enough. See Figure

FIGURE 12

Now X;(z) and Xa(x) separate the circle Q,N into two segments. Let A(x)
be the segment containing Xo(z) (which is the shorter segment). Then A =
U.con A() is an annulus with boundaries X;(0N) and X3(9N). We have a nat-
ural diffeomorphism « : R/Z x [0,1] — A where u(s,?) is the unique vector in
O, ()N such that

_ The angle between u(z,t) and X1 (h1(s))
~ The angle between X;(hi(s)) and Xo(hyi(s))
In particular, we have u(s,0) = X;(h1(s)) and u(s,1) = Xa(hi(s)).
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Thus we can can break A down to a family of disjoint curves 7, : [0,1] — A from
X1(x) to a(X1(x)) defined as

Nhy(s)(t) = u(s +et, t).
See Figure

(1)

T

FiGURE 13. Values of 7, from 0 to 1

f(2,0) = f(a,1)

FIGURE 14. Values of f(z,-) from 0 to 1

Define
f:ON xR/Z — PQN
as
P(fxm(r)) #0<t<1-¢
L)) ifl-—e<t<l
See Figure [14]
Proposition 4.2. f: 0N x R/Z — PQN is an embedding.

Proof. Suppose that f(x,t) = f(z/,¢). 0 <t < 1—¢, then 7(f(x,t)) is not
on the boundary, so w(f(a',t")) is also not on the boundary, which implies that
0 <t' <1—e. However, wo f(x,-)|(,1—c) and wo f(z’,-)[(0,1—c) are geodesics in N,
so they always intersect transversely, and thus f(z,t) and f(z',t') are equal if and
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only if (z,t) = (2/,t). f 1 —e <t <1, then1—¢ <# < 1. Now f(x,t) = P(n.(t))
and f(a',t') = P(n.(t')), where P : A — PQN is injective because the angle
between X;(z) and Xs(x) is smaller than 7. Hence f(z,t) = f(a/,t') if and only
if n,(t) = 1. (t), which, by our definition of 7, is equivalent to (z,t) = (2/,¢).
Therefore, f is an embedding of the torus R/Z x ON into the solid torus PON. O

Proposition 4.3. f(z,-) is contractible in PIN.

Proof. We shall show that f(z,-) is homotopic to P o Yx (). As e — 0, T' con-
verges to the identity map, X; and X5 converge to Xy, and f(z, é) converges to

P(¥x,(t)) for t € [0,1 —¢]. Thus f(z,-) is homotopic to P o Yx,(a)- O
Proposition 4.4. f(x,-) is isotopically trivial in PQN.
Proof. Define 81 : R/Z — ON x R/Z as

Ar(t) = (ha(t),0),
and define B2 : R/Z — ON x R/Z as

Ba(t) = (h1(0),1).
Let p = 81(0), then

m(ON x R/Z,p) = {[B1]s]Be], : ko1 € Z} = 7.
Let
fe :m(ON X R/Z,p) — 71 (PQN, f(p))

be the induced homomorphism between fundamental groups. Since w1 (PQN, f(p)) =
Z, f.« is not injective. Since |12, Corollary 3.3] a two-sided surface f is incompress-

ible if and only if f, is injective, the torus f(ON x R/Z) has a compressing disk

embedded in PQN.

As e — 0, f o 8 converges to the projectivized unit tangent vector field along
ON, so f.([B1]p) # 0 by Proposition Since f(h1(0), -) is homotopic to vx,(x, (0)),
both of them are contractible in PQQN by Proposition Since m (PN, f(p)) =
Z, there is no difference between free homotopy and based homotopy, hence f.([52],) =
0.

Now, let B be a compressing disk of the torus f(ON x R/Z), then OB is a
circle embedded f(ON x R/Z) which is contractible in PQN. It follows that 0B is
homotopic to f o 8y on f(R/Z x S). Any two simple closed essential curves on a
surface are isotopic to each other if and only if they are freely homotopic to each
other [9]. Therefore, dB is isotopic to f o 2 = f(h1(0),-) on f(R/Z x S) C PQN.
Since OB bounds a disk B in PQN, 9B is isotopically trivial, and so is f(h1(0),-)
in POQN. This completes the proof of Proposition [£.4] (I

Notice (see below) that Proposition contradicts Theorem when L > 0,
which proves Theorem [1.10

Proof of Theorem[1.10. Suppose that L > 0. Pick any # € OM. Let v = vx, ()
and By = P on,.

If 71 has no self-intersections, then vy, (), the limit of 71 as € — 0, also has
no self-intersections. By Proposition P o ¥x,(s) is not contractible in PNy,
which contradicts Proposition [4.1] Therefore, 7, has at least one self-intersection.
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Let 81 = P o4, Notice that v, and P o 82 have no intersections except at end
points and that f(z,-) is the closed curve obtained by gluing 8; and 5. By Theorem
f(z,-) is isotopically non-trivial in PQ2N;, which contradicts Proposition
Thus L = 0, which finishes the proof of Theorem [I.10] O

APPENDIX A. APPROXIMATING SMOOTH KNOTS BY PIECEWISE LINEAR KNOTS

The goal of this section is to prove the following lemma, which allows us to
approximate knot isotopies using piecewise-linear knot isotopies.

Lemma A.1l. Suppose that there is a continuous knot isotopy G : [0,1] x R/Z —
PQN. Then there is continuous family of knot isotopies H : [0,1] x [0,1] x R/Z —
PQN such that H(0,-,-) = G, that H(l,s,") is a knot embedded in PQN for each
(I,s) € 10,1] x [0,1], and that H(1,s,-) is a piecewise linear knot for each s € [0, 1].

The following proposition and its corollaries will be our main tool used in this
section.

Proposition A.2. Assume that K is a compact smooth manifold and M is a
Riemannian manifold. Suppose that G : K X [a,b] — M is smooth and that each
G(s,-) is a smooth curve whose speed is never 0. For any e > 0, there is § > 0
such that the angles between G(s,-)|it, +,) and the minimal geodesic connecting its
end points are smaller than € whenever |t; — ta| < 0.

Proof. Pick any € > 0. There is €1 > 0 such that |0| < ¢ if | cos(f) — 1| < &1 and if
0] <.
Define L : K X [a,b] X [a,b] — R as
E(G(S’ ')|[t1,t2]) if te > 11,
—L(S,tl,tg) if t9 < t1,

L(S,thtg) = {

where £(G(s, )|}, t,)) is the length of G(s, )|, +,). Similarly, define D : K x [a,b] x
[a,b] — R as

d(G(s,t1), G(s,t2)) ifto > 11,

*D(S,tl,tg) if to < t1.

D(S,tl,tz) = {

For any fixed s, we have
(A1) L(s,t1,t2) — D(s,t1,t2) = o((ta — t1)?)
as tg — t1. Put

2 D(s,t1,12)

ot
Q(s,t1,t2) = F———.
’ %L(S»tlatz)

Then we have Q(s,t1,t1) = 1 by (Ad).

We shall show the @ is continuous near K x Afa, b] where Ala, b] is the diagonal
of [a,b] X [a,b]. Since G is continuous and K is compact, there is é; > 0 such
that d(G(s,t1),G(s,t2)) < inj(M) if |[t; — ta| < 01. Since the squared distance
function is smooth within the injectivity radius, D? is smooth on K x Vs, where
Vs, = {(t1,t2) € [a,b] X [a,b] : |t1 — t2] < 61} and hence %D is continuous. Also,
(%L is obviously continuous on K X [a,b] X [a, b] (since L(s,t1,-) is just the signed
arc length). Therefore, @ is continuous on K X Vj,. Since @ is continuous and K is
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compact, there is § € (0,471) such that |Q(s, t1,t2) — Q(s,t1,t1)] < &1 if |[t1 —t2| < 4,
that is, |@Q — 1| < e on K x V5.

For any (s,t1,t2) € Kx Vs \ Ala,b], let 0(s, t1,t2) be the angle between G (s, -)|[#, 1]
and the minimal geodesic connecting its end points at the endpoint G(s,t2). By
the first variation of arc length,

%D(S,tl,tz)

cosO(s,t1,t2) = —5———
3, L(s,t1,t2)

= Q(sa t1, t2)~
Hence 6 < € on K x V;. Therefore the angles between G(s, -], +,) and the minimal
geodesic connecting its end points are smaller than € whenever [t; — t3] < d. O

For any compact Riemannian surface N, we can apply the above proposition to
unit-speed linear curves of length < 1 in PQN (which has the Sasakian metric on
it), which is a compact family of curves in PQN. For any p,q € PQAN such that
d(p,q) < inj(PQN) and that dp(p,q) < inj(N), let 7, 4 be the minimal geodesic
connecting p and ¢. Recall that 727,1 is the minimal linear curve connecting p and
q.

Corollary A.3. Assume that N is a compact Riemannian manifold. For any
€ >0, there is 6 > 0 such that the angles between ~p 4 and 72@ are smaller than e
for any p,q € PQAN such that 0 < d(p,q) <.

Suppose that p, g, € PQN are close enough that there are minimal linear curves
'yg)q, vg)T and '72,r' Denote by A(p, q,r) the sum of the three angles between 'yg)q,
’yg,T and 'ng. Since the sum of the inner angles of small geodesic triangles are close
to m, Corollaryimplies that A(p, q,r) is also close to m when p, ¢ and r are close
enough.

Corollary A.4. Assume that N is a compact Riemannian manifold. For any
e > 0, there is § > 0 such that |A(p,q,7) — 7| < & for any p,q,r € PQN such that

d(p.q),d(p,r),d(q,) € (0,9).
The following result follows from Proposition and Corollary

Corollary A.5. Assume that K is a compact smooth manifold and N is a compact
Riemannian manifold. Suppose that G : K x [a,b] — PQN is smooth and that each
G(s,-) is a smooth curve whose speed is never 0. For any e > 0, there is 6 > 0 such
that the angles between G(s, )|+, and vg(s7t1)’c(s7t2) are smaller than € whenever

‘t1 —t2| < 4.

Proof of Lemma[A-]. We shall assume that G is smooth since it is standard to
approximate continuous isotopies by smooth isotopies.

Put ¢ = 0.1. By Corollary [A75] there is d; > 0 such that the angles between
G(8,°)|[t,,t,] and fyg(s7tl)7c(s’t2) are smaller than ¢ whenever |t; — t3] < ;. By
Corollary [A-4] there is £ > 0 such that

(A.2) |A(p,q,7) — 7| < e

for any p,q,r € PQN such that d(p,q),d(p,7),d(q,7) € (0,&0). Also, by corollary
there is 1 € (0, p) such that the angles between '7qu and 7y, 4 are smaller than
¢ for any p,q € PQN such that 0 < d(p,q) < €1. Since G is continuous, there is
02 € (0,671) such that d(G(s,t1),G(s,t2)) < e1 if d(t1,t2) < d2.
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For each (s,t) € [0,1] x R/Z, let I(t) = R/Z\ (t — d2,t + 02), then D(s,t) :=
d(G(s,t),G(s,I(t))) > 0. Let g2 = min(ey,inf (s 4)ef0,1)xr/z D(8,1)), then go > 0.
Since G is continuous, there is § € (0,d2) such that d(G(s,t1),G(s,t2)) < 3e2 if
d(tl,tz) < 4.

Pick n € N such that nd > 1. Define H : [0,1] x [0,1] x R/Z — PQN as

H(l,s,

@) _ {vg(g k) e (F) O <<
n

G(s, Ett) ifl<t<1

’on

where k € Z/nZ, and ¢ € [0,1]. It is obvious that H(0,-,-) = G and H(1,-,-) is
an isotopy of piecewise linear knots. We shall show that each H(I,s,-) is a knot
embedded in PQN.

Suppose that H(l, s, -) has a self-intersection, that is, H(l, s, 20) = H(l, s, k2ti2)
for some k; € Z/nZ and t; € [0,1) such that k; # ko or t1 # to.

Since G(s,-) is an embedding, we have either ¢; < [ or to < I. Without loss of
generality, assume that t; < [. Write t3 = k1+t1 and t4 k’-’“?. We shall show

that ’YG( L) G, ELE isin Nez (G(s, —)) the ball of radius % centered at G(s, )
n k‘71’

)
Put p = G(s, ) and ¢ = G(s, BLt). Since d(22, BLtl) < § < 15,5, d(p,q) < e1.
Define @ : [0, 1] — R as

n’

%d(p, 79, (1))
g(’Yp,q | [0,] )

By the first variation of arc length, Q(t) = cos 8(t) where 6(t) is the angle between
’yg’q|[07t] and the minimal geodesic connecting their end points at the end point
79 ,(t). Since d(p, q) < $e2 < e1, B(t) < e =0.01, and hence Q(1) > 0. If Q(t) =0
for some t € [0, 1), then let tg = sup{t € [0,1) : Q(t) = 0}. Then we have Q(to) =0
and Q(t) > 0 for t € (g, 1]. Since

Qt) =

1

.73 00) = d.0) — | D 4pl (1))t

T
VD g(y )
—d(p,q) — [ 2A2alOH g
q) / o
<d(p,q)
<éq,

0(ty) < €, and hence Q(tp) > 0, which contradict our assumption that Q(tg) = 0.
So Q(t) > 0 for any t € [0,1], which implies that d(p,~} ,(t)) is strictly increasing.
Hence d(p,~) ,(t)) < d(p,q) < % for all ¢ € [0,1), that is, 4°

G(s,55),G(s, 5h)
Nez(p). It also follows that 72;(37M)7g(5,’;1) has no self-intersections, and thus
ky # ko.

Assume that d(%, k2) > 4, hen G(s, %2) ¢ N.,(G(s,%)). Hence we have
Nez (G(s, %))ﬂst( (s, k2 %2)) = (). When ty <1, H(l,s,14) is on'yG( E2) (s Bty
which is contained in Nez (G(s, kn—?)), and hence H(l,s,t4) € Nez (G(s, kn?)) How-
ever, for the same reason, H(l,s,t3) € Nz (G(s, 1)), and hence H(l,s,t3) #

H(l,s t4) which contradicts our assumption. When to > 1, H(I, s,t4) = G(s,t4).
Since d(%2,t,) = L < 1 <5, d(G(s,%2),G(s,ts)) < 2, and hence H(l,s,t4) €

is in
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Nz (G(s k2)). Again, H(l,s,t3) # H(l,s,ts), which contradicts our assump-

tlon Therefore, d(;,%) < 02. We shall assume that %2 € (%, %1 + d2), and
the other case (% € (f ’; + J2)) can be addressed similarly. Then we have
d(H(1, s, Bt H(l, s, 22)) < es.

We shall show that d( (s, f) H(l,s,t4)) < €. If to > 1, then H(l,s,ts) =
G(s,ts). We have d(G(s, %2),G(s,t1)) < e since d(£2,t4) < 6. If to < I, then
d(G(s,22), H(l,s,t1)) < d(G(s,%2), H(l,s, 52t1)) < &5. Using the same argument,
we have d(G(s, klﬂ“) H(l, s,t3)) < 2.

Write p; = H(l, s, ’“ln"’l)7 p2 = H(l, s, ) and p3 = H(l, s,t3) = H(l,s,t4). Then
the angle between ng’p], and G(s,-) is at most ¢ for any i # j. Hence the angle

0 0 0 0
between v, . and v, . and the angle between v, . and~,, . areat least m—2e.

P,
Hence A(p1,p2,ps) > 27 — 4e, which contradicts (A.2)).
This completes the proof of Lemma [A7T] O
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