
SIMPLE RIEMANNIAN SURFACES ARE SCATTERING RIGID
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Abstract. Scattering rigidity of a Riemannian manifold allows one to tell the

metric of a manifold with boundary by looking at the directions of geodesics

at the boundary. Lens rigidity allows one to tell the metric of a manifold with
boundary from the same information plus the length of geodesics. There are

a variety of results about lens rigidity but very little is known for scattering

rigidity. We will discuss the subtle difference between these two types of rigidi-
ties and prove that they are equivalent for two-dimensional simple manifolds

with boundaries. In particular, this implies that two-dimensional simple man-

ifolds (such as the flat disk) are scattering rigid since they are lens/boundary
rigid (Pestov–Uhlmann, 2005).

1. Introduction

1.1. The invisible Eaton lens. The invisible Eaton lens [8, 11, 13] is a gradient-
index (GRIN) lens that looks like the vacuum from the outside, but has an infinite
refractive index at the center. The refractive index n of the invisible Eaton lens is
given by

√
n =

1

nr
+

√
1

n2r2
− 1.

One can think the Eaton lens as a Riemannian manifold with the conformally flat
metric n2g0 on the unit disk. The metric has a singularity at the center, and the
trajectories of light will be geodesics in that Riemannian manifold.

As can be seen from Figure 1, the direction of each light ray when entering the
lens is the same as the direction of the light ray when leaving the lens. Hence
there is no refraction visible from the outside, (even though each light ray makes a
complete circuit inside the Eaton lens,) and thus this Eaton lens is invisible.

Figure 1. Trajectories of light in an invisible Eaton lens

Question 1.1. Can we have an invisible lens without singularities?
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2 H. WEN

1.2. Scattering rigidity and lens rigidity. Question 1.1 is equivalent to asking
if flat balls are scattering rigid. Simply put, a Riemannian manifold M is scattering
rigid if M is determined by its scattering data (see below) up to isometries which
leave the boundary fixed.

Let π : ΩM → M be the unit tangent bundle of M and ΩxM be the set of
unit tangent vectors at x for any x ∈ M . Let ∂ΩM be the boundary of the unit
tangent bundle of M . In other words, ∂ΩM =

⋃
x∈∂M ΩxM . For each x ∈ ∂M , let

νM (x) be the unit normal vector of M pointing inwards at x. Then put ∂+ΩxM =
{X ∈ ΩxM : (X, νM (x))gM > 0}, ∂0ΩxM = {X ∈ ΩxM : (X, νM (x))gM = 0}, and
∂−ΩxM = {X ∈ ΩxM : (X, νM (x))gM < 0}. Also, write ∂+ΩM =

⋃
x∈∂M ∂+ΩxM ,

∂0ΩM =
⋃
x∈∂M ∂0ΩxM , and ∂−ΩM =

⋃
x∈∂M ∂−ΩxM .

For each X ∈ ∂+ΩM , there is a geodesic γX whose initial tangent vector is X.
Extend the geodesic as long as possible until it touches the boundary ∂M again.
Let τX := `(γX), the length of γX .

If the geodesic γX is of finite length, call its tangent vector at the other end point
αM (X). (See Figure 2.) The map αM : ∂+ΩM → ∂ΩM defined above is called the
scattering relation of M . Note that αM (X) will be undefined if γX is of infinite
length.

γXX

αM(X)M

∂M

Figure 2. The scattering map αM

Suppose that we have two Riemannian manifolds (M, gM ), (N, gN ) and an isom-
etry h : ∂M → ∂N between their boundaries. Then there is a natural bundle map
ϕ : ∂ΩM → ∂ΩN defined as

ϕ(aX + bνM (x)) = ah∗(X) + bνN (h(x))(1.1)

for any unit vector X based at x tangent to ∂M and real numbers a and b such
that a2 + b2 = 1. M and N are said to have the same scattering data rel h if
ϕ ◦ αM = αN ◦ ϕ. If we also have `(γX) = `(γϕ(X)), then we say M and N have
the same lens data rel h.

Definition 1.2. We say a Riemannian manifold M is scattering rigid (resp. lens
rigid) if for any Riemannian manifold N which has the same scattering data as M
(resp. lens data) rel h, (where h : ∂M → ∂N is an isometry,) we can always extend
h to an isometry from M to N .

We will omit “rel h” when h is clear from the context or the specific choice of h
does not matter.

Question 1.3 (Equivalent to Question 1.1). Are flat balls scattering rigid?

Remark 1.4. Theorem 1.10 (below) shows that 2-D flat disks are scattering rigid.
Flat balls (of any dimensions) are known (Gromov [10]) to be lens rigid.
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1.3. Simple manifolds.

Definition 1.5. A compact Riemannian manifold with boundary is simple if

(1) its boundary is strictly convex,
(2) there is a unique minimizing geodesic connecting any pair of points on the

boundary,
(3) the manifold has no conjugate points.

Remark 1.6. Note that simple manifolds are topological balls.

Conjecture 1.7 (Michel [14]). Simple Riemannian manifolds are lens (boundary)
rigid.

Theorem 1.8 (Pestov–Uhlmann [15]). Simple Riemannian surfaces are lens (bound-
ary) rigid.

Remark 1.9. A Riemannian manifold is boundary rigid if its metric is determined by
the distance function between boundary points. The above statements are originally
about boundary rigidity, which is equivalent to lens rigidity when the manifold is
simple. Theorem 1.8 confirms the conjecture for surfaces. There are a variety
of results in higher dimensions (Besson–Courtois–Gallot [2], Burago–Ivanov [3, 4],
Croke–Kleiner [7], Michel [14]), but it is still largely open.

Our result extends Theorem 1.8 to scattering rigidity.

Theorem 1.10. Simple Riemannian surfaces are scattering rigid.

Remark 1.11. Simple Riemannian manifolds do not have trapped geodesics and
trapped geodesics often make this type of rigidity problems much harder. Amaz-
ingly, the first (and the only one before this one) known result (Croke [6]) of scat-
tering rigidity is for the flat product metric on S×Dn, which has trapped geodesics.

To get Theorem 1.10 from Theorem 1.8, it suffices to show that M and N have
the same lens data if they have the same scattering data, assuming that M is simple.
Note that this is not true in general without the assumption that M is simple. (See
Figure 3.)

(a) (b)

Figure 3. 3b is obtained from 3a by removing the upper hemi-
sphere and identifying antipodal points in the top boundary com-
ponent. 3a and 3b have the same scattering data but different lens
data.

By the first variation of arc length, `(γϕ(X))−`(γX) is equal to a constant L ≥ 0.
If L > 0, then γϕ(X) converges to a closed geodesic of length L as X converges to a
vector X0 tangent to the boundary. (See Figure 4.) We will call this closed geodesic
γX0

.
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(a) γX in M (b) γϕ(X) in N

Figure 4. Closed geodesics?

At first glance, this is very unlikely to happen, since one expects ∂N to be convex
as ∂M is convex. However, the convexity of the boundary of a manifold, being a
local property, is not determined by local scattering data as illustrated by the
invisible Eaton lens. The boundary of the invisible Eaton lens is actually totally
geodesic, and we have closed geodesics running along the boundary. The trickiest
part of the proof is to get rid of these closed geodesics using knot theory, (which
only works in dimension 2 so far).

1.4. Scheme of the proof. As explained in the previous section, we need to close
the gap between lens rigidity and scattering rigidity, that is, to show L = 0. Recall
that L = `(γϕ(X)) − `(γX), the difference between the lengths of corresponding
geodesics in M and N , where M and N are two Riemannian manifolds with the
same scattering data rel h : ∂M → ∂N .

In section 2, we will prove that N is homeomorphic a disk.
Pick any x ∈ ∂N . If L > 0, then there is a closed geodesic γx of length L which

is tangent to ∂N at x. There are two such closed geodesics for each x, but we can
choose γx properly such that γx moves continuously as x moves. In this section, we
will assume that γx has multiplicity 1. The actual proof will be more complicated
due to the possibility of higher multiplicities, but the idea of the proof is the same.

The paper will study the isotopy type of the projectivized unit tangent vector field
P ◦ γ̃x : R/Z→ PΩN of γx where γ̃x : R/Z→ ΩN is the unit tangent vector field
of γx (see (3.1) in section 3), PΩN = ΩN/{(x, ξ) ∼ (x,−ξ)} is the projectivized
unit tangent bundle of N , and P : ΩN → PΩN is the corresponding quotient map.

In section 3 we shall define a family of knot invariants for contractible knots
embedded in PΩN , and then use those invariants to prove Theorem 1.12, which is
interesting on its own.

Theorem 1.12. P ◦ γ̃ is an isotopically non-trivial knot in PΩN for any smooth
immersed curve γ : R/Z→ N without self-tangencies.

Remark 1.13. Theorem 1.12 is purely knot-theoretical as it involves nether scatter-
ing data nor lens data. It is a bit surprising that this simple fact was not known
before even for plane curves. Actually, it would be a completely different story if
the projectivization were dropped: Chmutov–Goryunov–Murakami [5] showed that
every knot type in ΩR2 (including the trivial type) is realized by the unit tangent
vector field along an immersed plane curve.

Notice that the union of P ◦ γ̃x for all x ∈ ∂N is a torus immersed in PΩN . We
can perturb the immersion to an embedding. Then we can prove that the torus
is compressible by showing that P ◦ γ̃x is contractible. (Actually, any embedded
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torus in PΩN is compressible.) Next, we can show that the other generator of the
fundamental group of the torus is not contractible in P ◦ γ̃x. It follows that P ◦ γ̃x
bounds an embedded disk, which contradicts Theorem 1.12. Therefore, there is no
such closed geodesics.

In the actual proof, we shall prove Theorem 1.10 in section 4 using a similar
contradiction without the assumption on the multiplicity.

1.5. Acknowledgements. Many thanks to my advisor Christopher Croke for in-
troducing me this subject and teaching me the techniques in this field. Many ideas
in this paper stem from discussions with him.

2. Topology of N

Through out the paper (except in section 3), M and N will be two Riemannian
surfaces with the same scattering data rel h : ∂M → ∂N where h is an isometry.
Also, M is assumed to be simple. ϕ : ∂ΩM → ∂ΩN is the induced bundle map
defined in (1.1). We aim to prove the following result in this section

Proposition 2.1. N is homeomorphic to a 2-disk if M is simple.

If L := `(γϕ(X))− `(γX) = 0, then M and N have the same lens data, and hence
N is a 2-disk. Thus we shall assume that L > 0 in this section.

Pick a point p0 ∈ ∂N , and let β1 : [0, 1]→ ∂N be a constant speed closed curve of
multiplicity 1, starting and ending at p0. There are two such curves corresponding
to different orientations but either one is fine.

Fix an orientation of ∂N and let Y0(x) be the unit vector tangent to ∂N at
x ∈ ∂N such that Y0(x) and ∂N have the same orientation. Define βx : [0, 1]→ N
as

βx(t) = γY0(x)(Lt),

where γY0(x) is the closed unit speed geodesic tangent to Y0(x) of length L. Write
β2 = βp0 .

For any loop β in N based at p ∈ N , we will denote by [β]p the based homotopy
class of β. Also, let h : π1(N, p) → H1(N,Z) be the abelianization map which
sends based homotopy classes to corresponding homology classes. We will write
[β] := h([β]p).

Proposition 2.2. [β1]p0 = [β2]−2
p0 .

Proof. We shall prove the equivalent statement

[β2]p0 = [β2]−1
p0 [β1]−1

p0 .(2.1)

Let Y : [0, 1]p0 → ∂+ΩN be a smooth curve from Y0(x) to −Y0(x) such that
γYt(τ(Yt)) = β1(t).

Define H : [0, 1]× [0, 1]→M as

Hs(t) =

{
γYs(2τ(Ys)t) if 0 ≤ t ≤ 1

2 ,

β1((2− 2t)s) if 1
2 ≤ t ≤ 1.

Then [H0]p0 = [β2]p0 and [H1]p0 = [β2]−1
p0 [β1]−1

p0 , which implies (2.1). �
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Notice that βx are all in the same homology class. Denote by gC the homology
class of βx.

Assume that gC 6= 0. Since N is a surface with boundary, it deformation retracts
to a graph. (The deformation is quite simple. Take any cell structure on N . Remove
a 1-cell on the boundary and a 2-cell by deformation retraction if they intersect.
Repeat this process until all 2-cells are removed.) Hence H1(N,Z) = Zn for some
n ∈ N. So gC = mg0 for some m > 0 and g0 prime. Then the multiplicity of βx is
at most m since it must divide m. Let m0 be the maximal multiplicity of βx.

Proposition 2.3. If gC 6= 0, then H(N,Z) is generated by g0.

Proof. For any g ∈ π1(N, p0), let γg : [0, 1]→ N be the length minimizing represen-
tative of g that is of constant speed Tg. Since A := γ−1

g (N \ ∂N) is open, A =
⋃A

where A is a family of disjoint open intervals. For any (a, b) ∈ A, since γg is length
minimizing, γg|[a,b] has to be a geodesic segment. If a 6= 0, then γ′g(a) has to be
tangent to ∂N , or γg will have a corner at γg(a), contradicting the assumption that
γg is length minimizing. According to the scattering data, γ′g(b) is also tangent to
∂N if γ′g(a) is tangent to ∂N . Hence γg|[a,b] is a closed geodesic tangent to ∂N when
a 6= 0. Similarly, γg|[a,b] is closed geodesic tangent to ∂N when b 6= 1. Suppose that
a = 0 and b = 1. If γ′g(0) is not tangent to ∂N , then γ′g(0)/|γ′g(0)| = ϕ(X) ∈ ∂+ΩN
for some X ∈ ∂+ΩM , and we have γ′g(1)/|γ′g(1)| = αM (X). Since M is a simple
manifold and X ∈ ∂+ΩM , γX is a length minimizing geodesic, and thus X and
αM (X) have different base points. It follows that γ′g(0) and γ′g(1) also have different
base points, contradicting our assumption that γg is a loop. Therefore, in any case,

γg|[a,b] is a closed geodesic tangent to ∂N , and thus of length at least L
m0

. It follows

that |A| ≤ m0Tg/L < ∞. So we can write A = {(a1, b1), (a2, b2), . . . , (ang , bng )}
where ng = |A| and 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ang

< bng
≤ 1.

Since γg|[ai,bi] is a closed geodesic, [γg|[ai,bi]] = gki0 for some ki > 0. Deleting
all those closed geodesics from γg, we obtain a curve running around ∂N l times

for some l ∈ Z. Its homology class will be [β1]±l = [β2]±2l = g±2ml
0 . Therefore,

h(g) = g
±2m0l+

∑ng
i=1 ki

0 . Since h is surjective, H1(N,Z) is generated by g0. �

Proposition 2.4. N is not a Möbius strip.

Proof. Let π : N1 → N be a double over of N . Then N1 is an annulus with
two boundary components S1 and S2. There are p ∈ S1 and q ∈ S2 such that
d(p, q) = d(S1, S2). Let γ be the shortest curve from p to q, then γ is perpendicular
to S1 and S2 at tis end points. Let ν be the unit normal vector at p. Since γ is
the shortest curve from p to q, its beginning part must coincide with γν . If the
end point γν(τN1(ν)) is on S1, we can shorten γ by deleting γν . If the end point
γν(τN1(ν)) is on S2, then γ can not be any longer. Thus `(γ) = τN1(ν)

Notice that, for any X ∈ ∂+ΩN1, π ◦ γX = γπ∗(X). Let Yt be a smooth curve
in ΩpN1 such that Y0 = ν, that Yt ∈ ∂+ΩN1 for t ∈ [0, 1) and that Y1 is tangent
to ∂S1. Notice that the end point of π ◦ γYt = γπ∗(Yt) moves continuously (since
N has the same scattering data as the simple surface M), and hence the end point
of γYt

moves continuously for t ∈ [0, 1). Therefore, γYt
connects p and S2 for any

t ∈ [0, 1). However, we have `(γ) = τN1(ν) = τN (π∗(ν)) > L, and limt→1 `(γYt) =
limt→1 τN (π∗(Yt)) = L, which contradicts our assumption that γ is a shortest curve
connecting S1 and S2. �
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Proof of Proposition 2.1. If gC 6= 0, then H1(N,Z) is generated by g0 by Propo-
sition 2.3. Hence H(N,Z) = Z, which implies that N is a Möbius strip, which
contradicts Proposition 2.4.

Therefore, gC = 0. It follows that β2 is contractible, and hence β1 is contractible
by Proposition 2.2. Since every contractible simple closed curve on a surface bounds
a disk [9, Theorem 1.7], N is a disk. �

3. Knot theory

In this chapter, N will denote a Riemannian surface, with or without boundary,
orientable or not. We assume that there is a Riemannian metric on N just for
convenience and all the results can be stated with only a smooth structure.

3.1. Projectivized unit tangent vector fields.

Definition 3.1. The unit tangent vector field of a smoothly immersed curve γ on
any Riemannian surface N2 (possibly with boundary) is a smoothly immersed curve
γ̃ in ΩN defined as

γ̃(t) =

(
γ(t),

γ′(t)

|γ′(t)|

)
.(3.1)

Definition 3.2. Let P : ΩN → PΩN be the quotient map on the unit tangent bun-
dle which identifies the opposite vectors based at the same point. For any smoothly
immersed curve γ in N2, P ◦ γ̃ is called the projectivized unit tangent vector field
(or the tangent line field) of γ.

Remark 3.3. Chmutov–Goryunov–Murakami [5] showed that every knot type in
ΩR2 is realized by the unit tangent vector field along an immersed closed plane
curve. However, Theorem 1.12 shows that it is no longer possible to realize the
trivial knot after the projectivization. Figure 5 is an interesting example showing
that the unit tangent vector field of the figure eight curve is an unknot while the
projectivized unit tangent vector field of the figure eight curve is knotted.

(a) γ : R/Z→ R2 (b) γ̃ : R/Z→ ΩR2 (c) P ◦ γ̃ : R/Z→ PΩR2

Figure 5. The unit tangent vector field of the figure eight curve
is unknotted while the projectivized unit tangent vector field of the
figure eight curve is knotted. Here the solid tori (ΩR2 and PΩR2)
are projected to annuli for illustration.
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Proposition 3.4. For any smoothly embedded closed curve γ : R/Z → N in a
2-dimensional manifold N , γ̃ is not contractible in ΩN and hence P ◦ γ̃ is not
contractible in PΩN .

Proof. If γ is contractible, then γ bounds an embedded disk N1 in N [9, Theorem
1.7].

Let x = γ̃(0), p = γ(0) and F = π−1(p). Denote by [γ̃]x the based homotopy
class of γ̃. As in Figure 6, γ̃ corresponds to a vector moving along γ for a complete

N1

γ(0)

γ(0.25)

γ(0.5)

γ(0.75)

(a) γ̃

N1

(b) Moving base
points towards p

N1

(c) A generator of
π1(F, x)

Figure 6. γ̃ is homotopic to a generator of π1(F, x)

circle and being tangent to γ all the time, which is homotopic to a generator of
π1(F, x). Denote the generator of π1(F, x) by g1.

Since

F
i−−−−→ ΩN

π−−−−→ N

is a fibration, we have an exact sequence of homotopy groups

π2(N, p) −−−−→ π1(F, x)
i∗−−−−→ π1(ΩN, x)

π∗−−−−→ π1(N, p).

Here π1(F, x) = Z since F is a circle.
If N = S2, then π1(N, p) = 0 and π1(ΩN, p) = π1(RP 3, ∗) = Z/2Z. Hence

i∗(π1(F, x)) = Z/2Z. In particular, i∗(g1) 6= 0. A similar argument shows that
i∗(e) 6= 0 when N = RP 2.

If N 6= S2 and N 6= RP 2, then π2(N, p) = 0. Hence i∗ is injective. In particular,
i∗(g1) 6= 0.

This completes the proof of Proposition 3.4 �

3.2. Knot invariants. We shall define a family of knot invariants for contractible
knots in the projectivized unit tangent bundle PΩN and use these invariants to
prove Theorem 1.12.

Let β : R/Z → PΩN be a contractible smooth knot in the projectivized unit
tangent bundle PΩN , whose projection to the surface N2 is a smoothly immersed
curve γ : R/Z→ N2 without self-tangencies.

Definition 3.5. β has a crossing at (l, l′) ∈ R/Z× R/Z if l 6= l′ and γ(l) = γ(l′).
Note that a triple crossing will be treated as three independent crossings according
to this definition.
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Since β : R/Z → PΩN is contractible, we can lift β to β̂ : R/Z → ΩN , a

knot embedded in the unit tangent bundle. (β̂(t) is a unit vector at γ(t) but not
necessarily tangent to γ.)

Definition 3.6. A crossing of β at (l, l′) is positive if the two pairs of vectors

(β̂(l), β̂(l′)) and (γ′(l), γ′(l′)) are of the same orientation. (See Figure 7.) A cross-
ing will be called negative if it is not positive.

γ′(l)
γ′(l′)

(a) A positive crossing

γ′(l)
γ′(l′)

(b) A negative crossing

Figure 7. Each little arrow means a point on β̂
.

Lemma 3.7. Suppose that γ : R/Z → N is a smoothly immersed closed curve on
a surface N without self-tangencies, then all crossings of P ◦ γ̃(t) are positive.

Proof. Suppose that P ◦ γ̃ has a crossing at (l, l′). Write β = P ◦ γ̃. Then

(β̂(l), β̂(l′)) = (γ′(l), γ′(l′)), and hence they have the same orientation. Therefore
the crossing at (l, l′) is positive. �

Let X be any topological space. For any two curves α1 : [0, 1] → X and α2 :
[0, 1] → X such that α1(1) = α2(0), denote by α1 ∗ α2 : [0, 1] → X the curve
obtained by gluing α2 to α1. Also, define R(α1) as R(α1)(t) := α1(1− t). If α1 and
α2 are loops based at p, we have [α1]p[α2]p = [α1 ∗ α2]p and [R(α1)]p = [α1]−1

p .

Definition 3.8. Two closed curves α1 : R/Z → X and α2 : R/Z → X in any
topological space X are said to be in the same unoriented free homotopy class if γ1

is homotopic to either γ2 or R(γ2).

When β has a crossing at (l, l′), β̂(l) and β̂(l′) are two unit vectors with the
same base point x = π(β(l)) and they are neither opposite to each other nor the

same (since β is an embedding). Hence there is a unique shortest curve β̂(l,l′) in

π−1(x) connecting β̂(l) and β̂(l′). Separate β̂ into two arcs by cutting at β̂(l) and

β̂(l′), obtaining two arcs β̂1 : [0, 1]→ PΩN and β̂2 : [0, 1]→ PΩN going from β̂(l)

to β̂(l′).

Now, let β′1 = (P ◦β̂1)∗R(P ◦β̂(l,l′)), and β′2 = (P ◦β̂(l,l′))∗R(P ◦β̂2). Notice that
β′1 ∗ R(β′2) is homotopic to β, and hence [β′1]p[R(β′2)]p = [β′1 ∗ R(β′2)]p = [β]p = e.
Hence [β′1]p = [R(β′2)]−1

p = [β′2]p. In other words, β′1 is homotopic to β′2, and hence
β′1 and β′2 are in the same unoriented free homotopy class of PΩN .

Definition 3.9. The unoriented free homotopy class g(l,l′) of β′1 is called the type
of the crossing of β at (l, l′).
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+

Figure 8. Smoothing a crossing. Here each little arrow means a

point on β̂ and each little bar means a point on β̂(l,l′).

Definition 3.10. For each nontrivial unoriented free homotopy class g of closed
curves in the projectivized unit tangent bundle PΩN , define

Wg(β) = #{positive crossings of β of type g}
−#{negative crossings of β of type g}

3.3. Wg is a knot invariant.

Theorem 3.11. For each non-trivial free homotopy class g, Wg can be extended
to all the contractible knots embedded in PΩN as a knot invariant.

We will show that Wg is a knot invariant by verifying that Wg is unchanged
under Reidemeister moves. A knot will gain or lose a crossing of trivial type after
going through a Reidemeister move of type I. It will gain or lose a pair of crossing
of the same type but opposite signs after going through a Reidemeister move of
type II. Reidemeister moves of type III will not affect crossing. The proof is rather
lengthy because of some technical difficulties.

We will assume that N is compact, and the general case follows automatically
since any manifold is σ-compact.

Definition 3.12. According to [1, Theorem 5], there is r > 0 such that there is a
unique minimal geodesic segment joining p, q ∈ N if d(p, q) < r. The biggest such
r will be called the injectivity radius of N and we will denote it by inj(N).

For any two points p, q ∈ PΩN , let dh(p, q) be the distance between π(p) and
π(q) on N . (So dh is a pseudo metric on PΩN .) Notice that p is a projectivized
unit tangent vector at π(p). When dh(p, q) < inj(N), there is a unique shortest
geodesic γ : [0, 1] → N in N connecting π(p) and π(q). Let X : [0, 1] → PΩN
be the parallel projectivized vector field along γ such that X(0) = p. Similarly,
let Y : [0, 1] → PΩN be the parallel projectivized vector field along γ such that
Y (1) = q. Notice that the angle between X and Y is constant, which is smaller
or equal to π

2 . Call this angle dv(p, q). Next, put d0(p, q) = max(dh(p, q), dv(p, q)).

Note that dh, dv and d0(p, q) are all non-negative and symmetric, but they are not
metrics.

Definition 3.13. For any p, q ∈ PΩN such that dh(p, q) < inj(N) and that
dv(p, q) <

π
2 , let γ0

p,q : [0, 1] → ΩN be the curve that satisfies the following condi-
tions.

(1) γ0
p,q(0) = p and γ0

p,q(1) = q.
(2) π ◦ γ is the minimal geodesic connecting π(p) and π(q).
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(3) ∣∣∣∣Ddtγ0
p,q

∣∣∣∣ = dv(p, q).(3.2)

γ0
p,q will be called the minimal linear curve connecting p and q. A curve will be

called linear if it coincides with γ0
p,q for any pair of points p, q on the curve that are

close enough. A curve will be called piecewise linear if it consists of finitely many
linear curves.

Proof of Theorem 3.11. For any ε < min(inj(N), π2 ) and n ≥ 4, we will define
a class of closed piecewise linear knots in PΩN called K(n, ε). A closed knot
β : R/Z→ PΩN is in K(n, ε) if and only if the following condition holds:

(1) β is contractible.
(2) d0(β( kn ), β(k+1

n )) < ε for k = 0, 1, . . . , n− 1.

(3) β(k+t
n ) = γ0

β( k
n ),β( k+1

n )
(t) for t ∈ [0, 1] and k = 0, 1, . . . , n− 1.

In other words, the “distance” (dh and dv) between any two adjacent vertices p
and q is at most ε and the edge between them is γ0

p,q. K(n, ε) is an open subset of
(PΩN)n, and thus of dimension 3n.

Let β ∈ K(n, ε) be a piecewise smooth contractible knot with vertices {xk =
β( kn )} and edges {ek = γ0

xk,xk+1
}. Its projection π ◦ β is said to have a singularity

at the vertex π(xi) if π(xi) is on π ◦ ej for some j /∈ {i, i− 1}.
Let Kk(n, ε) be the set of knots in K(n, ε) whose projections on N have at most

k singularities. Also, let K′k(n, ε) = Kk(n, ε) − Kk−1(n, ε), knots with exactly k
singularities. Then K0(n, ε) is a open submanifold of K(n, ε), and K′1(n, ε) is a
submanifold of K(n, ε) of co-dimension 1.

Notice that the Wg(β) can be defined for β ∈ K0(n, ε) as before without any
modifications. Consider a continuous family of knots βt ∈ K0(n, ε). As t varies,
crossings of βt also moves continuously with their types unchanged. Therefore, Wg

is constant on each component of K0(n, ε).
Next, we extend Wg to K1(n, ε). The old definition can not be adapted directly

since there might singularities. Pick any β0, β1 ∈ K0(n, ε) such that β0, β1 are in
the same component of K1(n, ε). We aim to show that Wg(β0) = Wg(β1), and then
we can extend Wg to K1(n, ε) by making it constant on each component. Note that
Wg will remain the same on K0(n, ε).

Pick a smooth path H : [0, 1] → K1(n, ε) from β0 to β1. Perturbing H if
necessary, we may assume that H intersects K′1(n, ε) transversely a finite number
of times. Let x0(t), x1(t), . . . , xn(t) = x0(t) be the n vertices of H(t).

As long as H(t) stays in K0(n, ε), each crossing will just be moving without
changing its type. When H(t) passes through K′1(n, ε), there are three possibilities
corresponding to three types of singularities for knots in K′1(n, ε) listed below.
Suppose H(c) ∈ K′1(n, ε) and H(t) /∈ K′1(n, ε) for t ∈ (c − δ, c)⋃(c, c + δ). Then
π◦H(c) has a singularity at π(xi(c)) which is on π◦ej where xi(c) is the i-th vertex
of H(c) and ej(c) is j-th edge of H(c) (connecting xj(c) and xj+1(c)).

(1) If π ◦ ei(c) or π ◦ ei−1(c) is tangent to π ◦ ej(c), then the singularity is
called a cusp. This happens when i = j − 1 or i = j + 2. In this case,
H(c+ δ) has one more or one less crossing than H(c− δ) has. We will show
that the crossing involved is of the trivial type, (i.e., g = 0,) and hence
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Wg(H(c − δ)) = Wg(H(c + δ)) for any non-trivial unoriented homotopy
class g of closed curves immersed in PΩN .

(a) t = c− δ (b) t = c (c) t = c+ δ

Figure 9. 9c has one more crossing of the trivial type compared
to 9a. This corresponds to a Reidemeister move of type I.

Without loss of of generality, assume that i = j − 1 and that H(t) has
one more crossing at (l(t), l′(t)) than H(t′) has when c − δ ≤ t′ < c <
t ≤ c + δ. (See Figure 9.) For any t ∈ (c, c + δ], swapping l(t) and l′(t)
if necessary, we may assume that l(t) ∈ ( i−1

n , in ) and l′(t) ∈ ( i+1
n , i+2

n ).

Lift H : [0, 1] → K(n, ε) to Ĥ : [0, 1] → (R/Z → ΩN). Since H(t) is an

embedding, H(t)(l(t)) 6= H(t)(l′(t)), and hence Ĥ(t)(l(t)) and Ĥ(t)(l′(t))
are not opposite vectors. It follows that there is a unique minimal geodesic
α̂(t) : [0, 1] → π−1(x) connecting Ĥ(t)(l(t)) and Ĥ(t)(l′(t)). Let α(t) =
P ◦ α̂(t) and glue α(t) to H(t)|[l(t),l′(t)], obtaining a closed curve C(t). Then
the type of the crossing of H(t) at (l(t), l′(t)) is the unoriented homotopy
class of C(t). It remains to show that C(t) is contractible.

Let l(c) = limt→c+ l(t) and l′(c) = limt→c+ l
′(t), then C(c) can be defined

as before, which is homotopic to C(t) for t ∈ (c, c+ δ). We shall show that
C(c) is contractible.

Reparametrize C(c) as β̄ : R/Z → PΩN such that β̄(0) = H(c)(l(c)),
β̄( 1

3 ) = xi+1(c), β̄( 2
3 ) = H(c)(l′(c)) and π(β̄( 1

3 (1 + s))) = π(β̄( 1
3 (1 − s)))

for any s ∈ [0, 1]. To be precise, define β̄ as

β̄(t) =


H(c)( i+3t

n ) if t ∈ [0, 1
3 ],

H(c)( i+1
n + (3t− 1)(l′(c)− i+1

n )) if t ∈ [ 1
3 ,

2
3 ],

α(3− 3t) if t ∈ [ 2
3 , 1].

Consider the homotopy G : [0, 1]→ (R/Z→ PΩN) defined as

G(s)(t) =


β̄(t) if 0 ≤ t ≤ 1

3 (1− s),
T (β̄(t), π(β̄( 1

3 (1− s)))) if 1
3 (1− s) ≤ t ≤ 1

3 (1 + s),

β̄(t) if 1
3 (1 + s) ≤ t ≤ 1,

where T (β̄(t), π(β̄( 1
3 (1 − s)))) is a projectivized unit tangent vector at

π(β̄( 1
3 (1 − s))) obtained by transporting β̄(t) parallelly along π ◦ ej(c).

Notice that G(1) is a closed curve in Ωπ(xi)N , where Ωπ(xi)N is a circle of
length 2π, (using the Sasakian metric). We are going to show that G(1)
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is contractible by showing that `(G(1)) < 2π. For any piecewise smooth
curve γ : [a, b]→ PΩN , define its vertical length as

`v(γ) :=

∫ b

a

∣∣∣∣Ddtγ(t)

∣∣∣∣ dt,
where D

dt is the covariant derivative. Loosely speaking, `v(γ) measure the
angle that γ(t) rotates by as t goes from a to b. By our construction,
`v(G(s)) is constant as s goes from 0 to 1. Notice that β̄ has three edges.
The edge from β̄(0) to β̄( 1

3 ) and the edge from β̄( 1
3 ) to β̄( 2

3 ) both have
vertical lengths at most ε (by (3.2)), and the vertical length of the edge
from β̄( 2

3 ) to β̄(0) (which is reparametrized α) is at most π. Since ε < π
2 ,

`v(β̄) < π + 2ε < 2π, and hence `(G(1)) = `v(G(1)) = `v(G(0)) = `v(β̄) <
2π. It follows that G(1) is contractible, and hence C(t) is contractible for
any t ∈ [c, c+ δ].

(2) If π ◦ ei(c) and π ◦ ei−1(c) are not tangent to π ◦ ej(c), and if π ◦ ei(c) and
π ◦ ei−1(c) are on the same side of π ◦ ej(c), then the singularity is called
a self-tangency. In this case, H(c + δ) has two more or two less crossings
than H(c− δ) has. We can show that the two crossings involved are of the
same type g but opposite signs, and hence Wg(H(c+ δ)) = Wg(H(c− δ)).

Without loss of of generality, assume that H(t) has two more crossing at
(l1(t), l′1(t)) and (l2(t), l′2(t)) than H(t′) has when c−δ ≤ t′ < c < t ≤ c+δ.
(See Figure 10.) Let l1(c) = limt→c+ l1(t) and define l′1(c), l2(c) and l′2(c)

(a) t = c− δ (b) t = c (c) t = c+ δ

Figure 10. 10c has two more crossing of the same type but op-
posite signs compared to 10a. This corresponds to a Reidemeister
move of type II.

similarly. Switching l2 and l′2 if necessary, we may assume that l1(c) = l2(c)
and l′1(c) = l′2(c). Also, either H(l1(c)) = xi or H(l′1(c)) = xi. Without
loss of generality, we assume that H(l1(c)) = xi. Lift H : [0, 1] → K(n, ε)

to Ĥ : [0, 1]→ (R/Z→ ΩN), and denote the vertices of Ĥ(t) by x̂k(t) and
edges by êk(t).

For any t ∈ (c, c + δ], we can separate Ĥ(t) into two arcs by cutting

at Ĥ(l1(t)) and Ĥ(l′1(t)). Pick the arc which contains x̂i(t) and glue it

to Ĥ(l1(t),l′1(t)), obtaining a closed curve C1(t). We can also separate Ĥ(t)

into two arcs by cutting at Ĥ(l2(t)) and Ĥ(l′2(t)). Pick the arc which

does not contain ix̂i(t) and glue it to Ĥ(l2(t),l′2(t)), obtaining a closed curve
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C2(t). Next, define C1(c) and C2(c) by taking limits. It is then clear that
P ◦ C1(t) and P ◦ C2(t) are in the same unoriented homotopy class since
C1(c) = C2(c). Hence the two crossings at (l1(t), l′1(t)) and (l2(t), l′2(t)) are
of the same type.

Finally, it remains to show that the two crossings have opposite signs.
Without loss of generality, assume that the crossing at (l1(t), l′1(t)) is posi-

tive. In other words, (Ĥ(l1(t)), Ĥ(l′1(t))) and ((π◦H)′(l1(t)), (π◦H)′(l′1(t)))

have the same orientation. It follows that (Ĥ(l1(c)), Ĥ(l′1(c))) and (limt→c+(π◦
H)′(l1(t)), (π ◦ H)′(l′1(c))) have the same orientation. Since π ◦ ei(c) and
π ◦ ei−1(c) are on the same side of π ◦ ej(c), (limt→c+(π ◦ H)′(l1(t)), (π ◦
H)′(l′1(c))) and (limt→c+(π◦H)′(l2(t)), (π◦H)′(l′2(c))) have the opposite ori-

entation. Since (Ĥ(l1(c)), Ĥ(l′1(c))) and (Ĥ(l2(c)), Ĥ(l′2(c))) are the same,

(Ĥ(l2(c)), Ĥ(l′2(c))) and (limt→c+(π ◦ H)′(l2(t)), (π ◦ H)′(l′2(c))) have the
opposite orientation, and thus the crossing at (l2(t), l′2(t)) is negative.

(3) If π ◦ ei and π ◦ ei−1 are not tangent to π ◦ ej , and if π ◦ ei and π ◦ ei−1

are on different sides of π ◦ ej , then the singularity is called a transverse
self-intersection. In this case, all crossings moves continuously as t goes
from c− δ to c+ δ, although one crossing will be also a singularity at t = c.
The type and the sign of that crossing will be unchanged, which follows
from an argument very similar to the one used for the previous case.

In any case, we have Wg(H(c − δ)) = Wg(H(c + δ)) for any non-trivial type g. It
follows that Wg(β0) = Wg(H(0)) = Wg(H(1)) = Wg(β1), and thus we may extend
Wg to K1(n, ε) by making it constant on each component.

Next, we will extent Wg to the whole K(n, ε). Pick any β0, β1 ∈ K1(n, ε) such
that β0, β1 are in the same component of K(n, ε). We aim to show that Wg(β0) =
Wg(β1), and then we can extend Wg to K(n, ε) by making it constant on each
component.

The manifold K(n, ε) has a natural stratified structure as follows. For any γ ∈
K(n, ε), pick any neighborhood U of γ. If γ has k singularities, then let Uγ be
the component of U

⋂K′k(n, ε) containing γ, which is a submanifold embedded in
K(n, ε). Now, let Xm = {γ ∈ K(n, ε) : dim(Uγ) = m}. Then K(n, ε) is a stratified
space whose m-dimensional stratum is Xm. We obviously have X3n = K0(n, ε)
and X3n−1 = K′1(n, ε). (Note that Xm = K′3n−m(n, ε) is not true when m is big
since the singularities are not necessarily independent. See Figure 11.) Pick a
smooth path H : [0, 1] → K1(n, ε) from β0 to β1. Perturbing H if necessary, we
may assume that H intersects each stratum Xm transversely. In other words, H
does not intersect Xm at all if m < 3n− 1. Hence H is actually a path in K1(n, ε),
and thus Wg(β0) = Wg(β1). Therefore, we can extend Wg to K(n, ε) by making it
constant on each component.

We can extend Wg to a knot invariant for all contractible knots embedded in
PΩN using Lemma A.1, which will be proved in Appendix A. For any smooth
contractible knot β, we can approximate β by a piecewise linear knot β′ that is
homotopic to β. Then we set Wg(β) = Wg(β

′). Wg is well-defined according to
Lemma A.1. �

Now, we are ready to prove Theorem 1.12.

Proof of Theorem 1.12. Let β = P ◦ γ̃ be the projectivized unit tangent vector field
of γ.
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x1

x2 x3

x4

x5

x6 x7

x8

x9

Figure 11. This is the projection of a knot β ∈ X24 to N . Notice
that x4 is on the edge from x9 to x1 and also the edge from x6

to x7. Hence, there are two singularities involving x4. There are
also two singularities involving x6 and x7, and thus β ∈ K′4(9, ε).
This counterexample shows that Xm = K′3n−m(n, ε) is not true in
general when m is big.

If β is not contractible, then β is a non-trivial knot. Assume that β is con-
tractible. We are going to show that Wg(β) > 0 for some g, while Wg(Unknot) = 0
for any g.

Assume that γ has no self-intersections. Then β is not contractible by Proposi-
tion 3.4. So γ has at least one self-intersection.

We will start at any point on γ and trace along γ until hitting the trace. To
be precise, let q = max{t : γ|[0,t] has no self-intersection}. Then there is p ∈ [0, q)
such that γ(p) = γ(q) and β has a crossing at (p, q). By Lemma 3.7, the crossing

of β at (p, q) is positive. Separate β̂ into two arcs by cutting at β̂(p) and β̂(q).

Then β̂|[p,q] will be one of these two arcs. Glue β̂|[p,q] to β̂(p,q), obtaining a closed

curve β̂′. We can gradually widen the angle of γ|[p,q] at the corner until it becomes

a simple smooth closed curve, and β̂′ will converge to the unit tangent vector field

along that simple smooth closed curved. By Proposition 3.4, β̂′ is not contractible
in ΩN .

Denote by g the non-orientable homotopy type of β̂′, then Wg(β) ≥ 1 by Lemma
3.7. Since Wg(Unknot) = 0, β is isotopically non-trivial. �

Actually, a stronger (but more technical) result can be proved with exactly the
same proof.

Theorem 3.14. Suppose that γ1 : [0, 1]→ N is smoothly immersed curve without
self-tangencies and that β2 : [0, 1]→ PΩN is a smoothly embedded curve connecting
the end points of β1 := P ◦ γ̃. Glue β2 to β1, obtaining a closed curve β in PΩN . If
γ1 has at least one self-intersection, γ1 and π ◦ β2 have no intersections and π ◦ β2

has no self-intersections, then β is isotopically non-trivial.

Proof. Just let

β =

{
β1(2t) if t ∈ [0, 1

2 ],

β2(2− 2t) if t ∈ [ 1
2 , 1].
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and γ = π ◦ β. Let q = max{t : γ|[0,t] has no self-intersection}. Then there is
p ∈ [0, q) such that γ(p) = γ(q) and β has a crossing at (p, q).

Note that q < 1
2 because γ1 has at least one self-intersection. The rest of the

proof is very similar to the proof of Theorem 1.12 since it only involves β[p,q].
�

4. Closed geodesics tangent to the boundary

In this section, M and N will be two Riemannian surfaces with the same scat-
tering data rel h : ∂M → ∂N where h is an isometry. Also, M is assumed to be
simple. ϕ : ∂ΩM → ∂ΩN is the induced bundle map defined in (1.1). In this
section, we shall prove Theorem 1.10 by studying closed geodesics tangent to the
boundary.

Recall that L = τN (ϕ(X)) − τM (X) ≥ 0 is a constant. We need to show that
L = 0.

For any Y ∈ ∂0ΩN , Recall that γY is the limit of geodesic segments γX as
X → Y where X ∈ ∂+ΩN . γY is a closed geodesic of length L.

Proposition 4.1. If L > 0, then P ◦γ̃Y is contractible in PΩN for any Y ∈ ∂0ΩN .

Proof. Pick p ∈ ∂ΩN . Let Y ∈ ∂0ΩpN be one of the two unit vector at p which
are tangent to ∂N . Put

Ys = cos(πs)Y + sin(πs)ν(x),

for each s ∈ [0, 1].
Now define a continuous family of loops H : [0, 1]× R/Z→ ΩN as

Hs(t) =


γ′Ys

(3τ(Ys)t) if 0 ≤ t ≤ 1
3 ,

αN (Y(2−3t)s) if 1
3 ≤ t ≤ 2

3 ,

Y(3t−2)s if 2
3 ≤ t ≤ 1.

We shall show that H1|[ 13 ,1] is contractible. Since N is a disk, there is a diffeo-

morphism ψ : N → {(x, y) ∈ R2 : x2 + y2 ≤ 1}. For any X ∈ ΩN and x ∈ N , let
ξ(x,X) be the unit vector based at x such that ψ∗(ξ(x,X)) and ψ∗(X) have the
same directions as two vectors in R2.

Since N is a disk, ∂N is homotopic the constant curve at p. So there is a
homotopy q : [0, 1]× [0, 1]→ N such that q(1, ·) = p and that q(0, t) = π(αN (Yt)).
Next, define a continuous family of loops G : [0, 1]× R/Z→ ΩN as

Gs(t) =

{
ξ(q(s, 2t), αM (Y2t)) if 0 ≤ t ≤ 1

2 ,

Y2−2t if 1
2 ≤ t ≤ 1.

Let At be the angle that r1(t̄) := ξ(p, αM (Yt̄)) rotates by as t̄ goes from 0 to t. We
shall show that A1 = π. Let Bt be the angle that r2(t̄) := ξ(p, ddt̄q(0, t̄)) rotates

by as t̄ goes from 0 to t. Notice that ψ(q(0, t̄)) goes around the unit circle in R2

for a full circle as t goes from 0 to 1. Hence B1 = 2π. Let Ct be the signed angle
between r1 and r2. Since r1(0) and r2(0) have the same direction, Ct = Bt − At.
For any t ∈ (0, 1), αM (Yt̄) is not tangent to ∂N , and hence Ct ∈ [0, π] for t ∈ [0, 1].
Since r1(1) and r2(1) have opposite directions, C1 = π, which implies that A1 = π.
Therefore, ξ(p, αM (Yt)) rotates counterclockwise by π as t goes from 0 to 1. On
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the other hand, the Y2−2t rotate by π clockwise as t goes from 1
2 to 1. Hence G1 is

contractible. It follows that G0 is contractible, and thus H1|[ 13 ,1] is contractible.

Since H0|[ 13 ,1] is constant and H0|[0, 13 ] coincides with γ̃Y , H0 is homotopic to γ̃Y .

Since H1|[ 13 ,1] is contractible and H1|[0, 13 ] coincides with γ̃−Y , H1 is homotopic to

γ̃−Y . Therefore, γ̃Y is homotopic to γ̃−Y .
If we rotate each vector counterclockwise by π, then γ̃−Y becomes R(γ̃Y ). Hence

γ̃Y is homotopic to R(γ̃Y ). It follows that [γ̃Y ] = [R(γ̃Y )] = −[γ̃Y ], where [α]
means the homology class of α. Since N is a disk, ΩN is a solid torus, and hence
H1(ΩN,Z) = Z. Thus [γ̃Y ] = 0, that is, γ̃Y is contractible. Hence P ◦ γ̃Y is
contractible in PΩN . �

Fix an orientation of ∂N and let X0(x) be the unit vector tangent to ∂N at
x ∈ ∂N such that X0(x) and ∂N have the same orientation. Let h1 : R/Z→ ∂N be
an orientation preserving diffeomorphism. Pick ε > 0 small and let T : ∂N → ∂N
be a diffeomorphism defined as

T (x) = h1(h−1
1 (x) + ε),

and let X1(x) ∈ ∂+ΩxN be the vector which is tangent to the geodesic from x to
T (x). Finally, put X2(x) = α(X1(T−1(x))). When T−1(x), x and T (x) are close,
both X1(x) and X2(x) are close to X0(x), so we may assume that the angle between
X1(x) and X2(x) is smaller than π by picking ε small enough. See Figure 12.

N

X0(x)

X1(x)

X2(x)

X1(T
−1(x))

T (x)

x

T−1(x)

Figure 12

Now X1(x) and X2(x) separate the circle ΩxN into two segments. Let A(x)
be the segment containing X0(x) (which is the shorter segment). Then A =⋃
x∈∂N A(x) is an annulus with boundaries X1(∂N) and X2(∂N). We have a nat-

ural diffeomorphism u : R/Z × [0, 1] → A where u(s, t) is the unique vector in
∂Ωh1(s)N such that

t =
The angle between u(x, t) and X1(h1(s))

The angle between X1(h1(s)) and X2(h1(s))
.

In particular, we have u(s, 0) = X1(h1(s)) and u(s, 1) = X2(h1(s)).
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Thus we can can break A down to a family of disjoint curves ηx : [0, 1]→ A from
X1(x) to α(X1(x)) defined as

ηh1(s)(t) = u(s+ εt, t).

See Figure 13.

N

ηx(0)

ηx(1)

T (x)

x

Figure 13. Values of ηx from 0 to 1

f(x, 0) = f(x, 1)

f(x, 1− ε)
N

x

T (x)

Figure 14. Values of f(x, ·) from 0 to 1

Define

f : ∂N × R/Z→ PΩN

as

f(x, t) =

{
P
(
γ̃X1(x)(

t
1−ε )

)
if 0 ≤ t ≤ 1− ε,

P
(
ηx( 1−t

ε )
)

if 1− ε ≤ t ≤ 1.

See Figure 14.

Proposition 4.2. f : ∂N × R/Z→ PΩN is an embedding.

Proof. Suppose that f(x, t) = f(x′, t′). If 0 < t < 1 − ε, then π(f(x, t)) is not
on the boundary, so π(f(x′, t′)) is also not on the boundary, which implies that
0 < t′ < 1− ε. However, π ◦ f(x, ·)|(0,1−ε) and π ◦ f(x′, ·)|(0,1−ε) are geodesics in N ,
so they always intersect transversely, and thus f(x, t) and f(x′, t′) are equal if and
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only if (x, t) = (x′, t′). If 1− ε ≤ t ≤ 1, then 1− ε ≤ t′ ≤ 1. Now f(x, t) = P (ηx(t))
and f(x′, t′) = P (ηx′(t

′)), where P : A → PΩN is injective because the angle
between X1(x) and X2(x) is smaller than π. Hence f(x, t) = f(x′, t′) if and only
if ηx(t) = ηx′(t), which, by our definition of η, is equivalent to (x, t) = (x′, t′).
Therefore, f is an embedding of the torus R/Z×∂N into the solid torus PΩN . �

Proposition 4.3. f(x, ·) is contractible in PΩN .

Proof. We shall show that f(x, ·) is homotopic to P ◦ γ̃X0(x). As ε → 0, T con-

verges to the identity map, X1 and X2 converge to X0, and f(x, t
1−ε ) converges to

P (γ̃X0(t)) for t ∈ [0, 1− ε]. Thus f(x, ·) is homotopic to P ◦ γ̃X0(x). �

Proposition 4.4. f(x, ·) is isotopically trivial in PΩN .

Proof. Define β1 : R/Z→ ∂N × R/Z as

β1(t) = (h1(t), 0),

and define β2 : R/Z→ ∂N × R/Z as

β2(t) = (h1(0), t).

Let p = β1(0), then

π1(∂N × R/Z, p) = {[β1]kp[β2]lp : k, l ∈ Z} ' Z2.

Let

f∗ : π1(∂N × R/Z, p)→ π1(PΩN, f(p))

be the induced homomorphism between fundamental groups. Since π1(PΩN, f(p)) =
Z, f∗ is not injective. Since [12, Corollary 3.3] a two-sided surface f is incompress-
ible if and only if f∗ is injective, the torus f(∂N × R/Z) has a compressing disk
embedded in PΩN .

As ε → 0, f ◦ β1 converges to the projectivized unit tangent vector field along
∂N , so f∗([β1]p) 6= 0 by Proposition 3.4. Since f(h1(0), ·) is homotopic to γX0(h1(0)),
both of them are contractible in PΩN by Proposition 4.1. Since π1(PΩN, f(p)) =
Z, there is no difference between free homotopy and based homotopy, hence f∗([β2]p) =
0.

Now, let B be a compressing disk of the torus f(∂N × R/Z), then ∂B is a
circle embedded f(∂N ×R/Z) which is contractible in PΩN . It follows that ∂B is
homotopic to f ◦ β2 on f(R/Z × S). Any two simple closed essential curves on a
surface are isotopic to each other if and only if they are freely homotopic to each
other [9]. Therefore, ∂B is isotopic to f ◦ β2 = f(h1(0), ·) on f(R/Z× S) ⊂ PΩN .
Since ∂B bounds a disk B in PΩN , ∂B is isotopically trivial, and so is f(h1(0), ·)
in PΩN . This completes the proof of Proposition 4.4 �

Notice (see below) that Proposition 4.4 contradicts Theorem 3.14 when L > 0,
which proves Theorem 1.10.

Proof of Theorem 1.10. Suppose that L > 0. Pick any x ∈ ∂M . Let γ1 = γX1(x)

and β2 = P ◦ ηx.
If γ1 has no self-intersections, then γX0(x), the limit of γ1 as ε → 0, also has

no self-intersections. By Proposition 3.4, P ◦ γ̃X0(x) is not contractible in PΩN1,
which contradicts Proposition 4.1. Therefore, γ1 has at least one self-intersection.
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Let β1 = P ◦ γ̃1 Notice that γ1 and P ◦ β2 have no intersections except at end
points and that f(x, ·) is the closed curve obtained by gluing β1 and β2. By Theorem
3.14, f(x, ·) is isotopically non-trivial in PΩN1, which contradicts Proposition 4.4.
Thus L = 0, which finishes the proof of Theorem 1.10. �

Appendix A. Approximating smooth knots by piecewise linear knots

The goal of this section is to prove the following lemma, which allows us to
approximate knot isotopies using piecewise-linear knot isotopies.

Lemma A.1. Suppose that there is a continuous knot isotopy G : [0, 1] × R/Z →
PΩN . Then there is continuous family of knot isotopies H : [0, 1]× [0, 1]×R/Z→
PΩN such that H(0, ·, ·) = G, that H(l, s, ·) is a knot embedded in PΩN for each
(l, s) ∈ [0, 1]× [0, 1], and that H(1, s, ·) is a piecewise linear knot for each s ∈ [0, 1].

The following proposition and its corollaries will be our main tool used in this
section.

Proposition A.2. Assume that K is a compact smooth manifold and M is a
Riemannian manifold. Suppose that G : K × [a, b] → M is smooth and that each
G(s, ·) is a smooth curve whose speed is never 0. For any ε > 0, there is δ > 0
such that the angles between G(s, ·)|[t1,t2] and the minimal geodesic connecting its
end points are smaller than ε whenever |t1 − t2| < δ.

Proof. Pick any ε > 0. There is ε1 > 0 such that |θ| < ε if | cos(θ)− 1| < ε1 and if
|θ| ≤ π.

Define L : K × [a, b]× [a, b]→ R as

L(s, t1, t2) =

{
`(G(s, ·)|[t1,t2]) if t2 ≥ t1,

−L(s, t1, t2) if t2 < t1,

where `(G(s, ·)|[t1,t2]) is the length of G(s, ·)|[t1,t2]. Similarly, define D : K× [a, b]×
[a, b]→ R as

D(s, t1, t2) =

{
d(G(s, t1), G(s, t2)) if t2 ≥ t1,

−D(s, t1, t2) if t2 < t1.

For any fixed s, we have

L(s, t1, t2)−D(s, t1, t2) = o((t2 − t1)2)(A.1)

as t2 → t1. Put

Q(s, t1, t2) =
∂
∂t2
D(s, t1, t2)

∂
∂t2
L(s, t1, t2)

.

Then we have Q(s, t1, t1) = 1 by (A.1).
We shall show the Q is continuous near K ×∆[a, b] where ∆[a, b] is the diagonal

of [a, b] × [a, b]. Since G is continuous and K is compact, there is δ1 > 0 such
that d(G(s, t1), G(s, t2)) < inj(M) if |t1 − t2| < δ1. Since the squared distance
function is smooth within the injectivity radius, D2 is smooth on K × Vδ1 where
Vδ1 = {(t1, t2) ∈ [a, b]× [a, b] : |t1 − t2| < δ1} and hence ∂

∂t2
D is continuous. Also,

∂
∂t2
L is obviously continuous on K × [a, b]× [a, b] (since L(s, t1, ·) is just the signed

arc length). Therefore, Q is continuous on K×Vδ1 . Since Q is continuous and K is
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compact, there is δ ∈ (0, δ1) such that |Q(s, t1, t2)−Q(s, t1, t1)| < ε1 if |t1− t2| < δ,
that is, |Q− 1| < ε1 on K × Vδ.

For any (s, t1, t2) ∈ K×Vδ \∆[a, b], let θ(s, t1, t2) be the angle betweenG(s, ·)|[t1,t2]

and the minimal geodesic connecting its end points at the endpoint G(s, t2). By
the first variation of arc length,

cos θ(s, t1, t2) =
∂
∂t2
D(s, t1, t2)

∂
∂t2
L(s, t1, t2)

= Q(s, t1, t2).

Hence θ < ε on K×Vδ. Therefore the angles between G(s, ·)|[t1,t2] and the minimal
geodesic connecting its end points are smaller than ε whenever |t1 − t2| < δ. �

For any compact Riemannian surface N , we can apply the above proposition to
unit-speed linear curves of length ≤ 1 in PΩN (which has the Sasakian metric on
it), which is a compact family of curves in PΩN . For any p, q ∈ PΩN such that
d(p, q) < inj(PΩN) and that dh(p, q) < inj(N), let γp,q be the minimal geodesic
connecting p and q. Recall that γ0

p,q is the minimal linear curve connecting p and
q.

Corollary A.3. Assume that N is a compact Riemannian manifold. For any
ε > 0, there is δ > 0 such that the angles between γp,q and γ0

p,q are smaller than ε
for any p, q ∈ PΩN such that 0 < d(p, q) < δ.

Suppose that p, q, r ∈ PΩN are close enough that there are minimal linear curves
γ0
p,q, γ

0
q,r and γ0

p,r. Denote by A(p, q, r) the sum of the three angles between γ0
p,q,

γ0
q,r and γ0

p,r. Since the sum of the inner angles of small geodesic triangles are close
to π, Corollary A.3 implies that A(p, q, r) is also close to π when p, q and r are close
enough.

Corollary A.4. Assume that N is a compact Riemannian manifold. For any
ε > 0, there is δ > 0 such that |A(p, q, r)− π| < ε for any p, q, r ∈ PΩN such that
d(p, q), d(p, r), d(q, r) ∈ (0, δ).

The following result follows from Proposition A.2 and Corollary A.3.

Corollary A.5. Assume that K is a compact smooth manifold and N is a compact
Riemannian manifold. Suppose that G : K× [a, b]→ PΩN is smooth and that each
G(s, ·) is a smooth curve whose speed is never 0. For any ε > 0, there is δ > 0 such
that the angles between G(s, ·)|[t1,t2] and γ0

G(s,t1),G(s,t2) are smaller than ε whenever

|t1 − t2| < δ.

Proof of Lemma A.1. We shall assume that G is smooth since it is standard to
approximate continuous isotopies by smooth isotopies.

Put ε = 0.1. By Corollary A.5, there is δ1 > 0 such that the angles between
G(s, ·)|[t1,t2] and γ0

G(s,t1),G(s,t2) are smaller than ε whenever |t1 − t2| < δ1. By

Corollary A.4 there is ε0 > 0 such that

|A(p, q, r)− π| < ε(A.2)

for any p, q, r ∈ PΩN such that d(p, q), d(p, r), d(q, r) ∈ (0, ε0). Also, by corollary
A.3, there is ε1 ∈ (0, ε0) such that the angles between γ0

p,q and γp,q are smaller than
ε for any p, q ∈ PΩN such that 0 < d(p, q) < ε1. Since G is continuous, there is
δ2 ∈ (0, δ1) such that d(G(s, t1), G(s, t2)) < ε1 if d(t1, t2) < δ2.
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For each (s, t) ∈ [0, 1] × R/Z, let I(t) = R/Z \ (t − δ2, t + δ2), then D(s, t) :=
d(G(s, t), G(s, I(t))) > 0. Let ε2 = min(ε1, inf(s,t)∈[0,1]×R/ZD(s, t)), then ε2 > 0.

Since G is continuous, there is δ ∈ (0, δ2) such that d(G(s, t1), G(s, t2)) < 1
2ε2 if

d(t1, t2) < δ.
Pick n ∈ N such that nδ > 1. Define H : [0, 1]× [0, 1]× R/Z→ PΩN as

H(l, s,
k + t

n
) =

{
γ0
G(s, kn ),G(s, k+l

n )
( tl ) if 0 ≤ t < l

G(s, k+t
n ) if l ≤ t ≤ 1

where k ∈ Z/nZ, and t ∈ [0, 1]. It is obvious that H(0, ·, ·) = G and H(1, ·, ·) is
an isotopy of piecewise linear knots. We shall show that each H(l, s, ·) is a knot
embedded in PΩN .

Suppose thatH(l, s, ·) has a self-intersection, that is, H(l, s, k1+t1
n ) = H(l, s, k2+t2

n )
for some ki ∈ Z/nZ and ti ∈ [0, 1) such that k1 6= k2 or t1 6= t2.

Since G(s, ·) is an embedding, we have either t1 < l or t2 < l. Without loss of
generality, assume that t1 < l. Write t3 = k1+t1

n and t4 = k2+t2
n . We shall show

that γ0

G(s,
k1
n ),G(s,

k1+l
n )

is in N ε2
2

(G(s, k1n )), the ball of radius ε2
2 centered at G(s, k1n ).

Put p = G(s, k1n ) and q = G(s, k1+l
n ). Since d(k1n ,

k1+l
n ) < δ < 1

3δ2, d(p, q) < ε1.
Define Q : [0, 1]→ R as

Q(t) =
∂
∂td(p, γ0

p,q(t))
∂
∂t`(γ

0
p,q|[0,t])

By the first variation of arc length, Q(t) = cos θ(t) where θ(t) is the angle between
γ0
p,q|[0,t] and the minimal geodesic connecting their end points at the end point

γ0
p,q(t). Since d(p, q) < 1

2ε2 < ε1, θ(t) < ε = 0.01, and hence Q(1) > 0. If Q(t) = 0
for some t ∈ [0, 1), then let t0 = sup{t ∈ [0, 1) : Q(t) = 0}. Then we have Q(t0) = 0
and Q(t) > 0 for t ∈ (t0, 1]. Since

d(p, γ0
p,q(t0)) = d(p, q)−

∫ 1

t0

∂

∂t
d(p, γ0

p,q(t))dt

= d(p, q)−
∫ 1

t0

∂
∂t`(γp,q|[0,t])

Q(t)
dt

< d(p, q)

< ε1,

θ(t0) < ε, and hence Q(t0) > 0, which contradict our assumption that Q(t0) = 0.
So Q(t) > 0 for any t ∈ [0, 1], which implies that d(p, γ0

p,q(t)) is strictly increasing.

Hence d(p, γ0
p,q(t)) ≤ d(p, q) < ε2

2 for all t ∈ [0, 1), that is, γ0

G(s,
k1+l

n ),G(s,
k1
n )

is in

N ε2
2

(p). It also follows that γ0

G(s,
k1+l

n ),G(s,
k1
n )

has no self-intersections, and thus

k1 6= k2.
Assume that d(k1n ,

k2
n ) ≥ δ2. Then G(s, k2n ) /∈ Nε2(G(s, k1n )). Hence we have

N ε2
2

(G(s, k1n ))
⋂
N ε2

2
(G(s, k2n )) = ∅. When t2 ≤ l, H(l, s, t4) is on γ0

G(s,
k2
n ),G(s,

k2+l
n )

,

which is contained in N ε2
2

(G(s, k2n )), and hence H(l, s, t4) ∈ N ε2
2

(G(s, k2n )). How-

ever, for the same reason, H(l, s, t3) ∈ N ε2
2

(G(s, k1n )), and hence H(l, s, t3) 6=
H(l, s, t4), which contradicts our assumption. When t2 ≥ l, H(l, s, t4) = G(s, t4).
Since d(k2n , t4) = t

n < 1
n < δ, d(G(s, k2n ), G(s, t4)) < ε2

2 , and hence H(l, s, t4) ∈
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N ε2
2

(G(s, k2n )). Again, H(l, s, t3) 6= H(l, s, t4), which contradicts our assump-

tion. Therefore, d(k1n ,
k2
n ) < δ2. We shall assume that k2

n ∈ (k1n ,
k1
n + δ2), and

the other case (k1n ∈ (k2n ,
k2
n + δ2)) can be addressed similarly. Then we have

d(H(l, s, k1+l
n ), H(l, s, k2n )) < ε2.

We shall show that d(G(s, k2n ), H(l, s, t4)) < ε2. If t2 ≥ l, then H(l, s, t4) =

G(s, t4). We have d(G(s, k2n ), G(s, t4)) < ε2 since d(k2n , t4) < δ. If t2 < l, then

d(G(s, k2n ), H(l, s, t4)) < d(G(s, k2n ), H(l, s, k2+l
n )) < ε2. Using the same argument,

we have d(G(s, k1+l
n ), H(l, s, t3)) < ε2.

Write p1 = H(l, s, k1+l
n ), p2 = H(l, s, k2n ) and p3 = H(l, s, t3) = H(l, s, t4). Then

the angle between γ0
pi,pj and G(s, ·) is at most ε for any i 6= j. Hence the angle

between γ0
p1,p2 and γ0

p1,p3 and the angle between γ0
p1,p2 and γ0

p2,p3 are at least π−2ε.
Hence A(p1, p2, p3) > 2π − 4ε, which contradicts (A.2).

This completes the proof of Lemma A.1. �
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